48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered Dark- and Photoconversion of Phytochrome B Mediate Extreme Light Sensitivity and Loss of Photoreversibility of the phyB-401 Mutant

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phyB-401 mutant is 10 3 fold more sensitive to red light than its wild-type analogue and shows loss of photoreversibility of hypocotyl growth inhibition. The phyB-401 photoreceptor displays normal spectral properties and shows almost no dark reversion when expressed in yeast cells. To gain insight into the molecular mechanism underlying this complex phenotype, we generated transgenic lines expressing the mutant and wild-type phyB in phyB-9 background. Analysis of these transgenic lines demonstrated that the mutant photoreceptor displays a reduced rate of dark-reversion but normal P fr to P r photoconversion in vivo and shows an altered pattern of association/dissociation with nuclear bodies compared to wild-type phyB. In addition we show (i) an enhanced responsiveness to far-red light for hypocotyl growth inhibition and CAB2 expression and (ii) that far-red light mediated photoreversibility of red light induced responses, including inhibition of hypocotyl growth, formation of nuclear bodies and induction of CAB2 expression is reduced in these transgenic lines. We hypothesize that the incomplete photoreversibility of signalling is due to the fact that far-red light induced photoconversion of the chromophore is at least partially uncoupled from the P fr to P r conformation change of the protein. It follows that the phyB-401 photoreceptor retains a P fr-like structure (P r *) for a few hours after the far-red light treatment. The greatly reduced rate of dark reversion and the formation of a biologically active P r * conformer satisfactorily explain the complex phenotype of the phyB-401 mutant and suggest that amino acid residues surrounding the position 564 G play an important role in fine-tuning phyB signalling.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Perception of UV-B by the Arabidopsis UVR8 protein.

          To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development.

            Phytochromes are a family of plant photoreceptors that mediate physiological and developmental responses to changes in red and far-red light conditions. In Arabidopsis, there are genes for at least five phytochrome proteins. These photoreceptors control such responses as germination, stem elongation, flowering, gene expression, and chloroplast and leaf development. However, it is not known which red light responses are controlled by which phytochrome species, or whether the different phytochromes have overlapping functions. We report here that previously described hy3 mutants have mutations in the gene coding for phytochrome B (PhyB). These are the first mutations shown to lie in a plant photoreceptor gene. A number of tissues are abnormally elongated in the hy3(phyB) mutants, including hypocotyls, stems, petioles, and root hairs. In addition, the mutants flower earlier than the wild type, and they accumulate less chlorophyll. PhyB thus controls Arabidopsis development at numerous stages and in multiple tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development.

              Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                3 November 2011
                : 6
                : 11
                : e27250
                Affiliations
                [1 ]Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
                [2 ]Institut für Biologie II/Botanik, Universität Freiburg, Freiburg, Germany
                [3 ]Centre of Biological Signalling (BIOSS), Universität Freiburg, Freiburg, Germany
                [4 ]School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
                USDA-ARS, United States of America
                Author notes

                Conceived and designed the experiments: ES FN. Performed the experiments: ÉÁ AH JB FW AV ME MM SK. Wrote the paper: ES FN. Created figures and handled manuscript for submission: ÉÁ AV SK FN.

                Article
                PONE-D-10-03106
                10.1371/journal.pone.0027250
                3207837
                22073299
                6f30912a-851c-45fb-a27a-a33ad6c8cbbc
                Ádám et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 October 2010
                : 12 October 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Interactions
                Protein Structure
                Regulatory Proteins
                Biotechnology
                Plant Biotechnology
                Transgenic Plants
                Molecular Cell Biology
                Signal Transduction
                Mechanisms of Signal Transduction
                Signal Initiation
                Signaling Cascades
                Plant Science
                Plant Cell Biology
                Plant Growth and Development
                Plant Physiology
                Proteomics
                Protein Abundance
                Protein Interactions
                Chemistry
                Chemical Reactions
                Photochemical Reactions

                Uncategorized
                Uncategorized

                Comments

                Comment on this article