5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hermite-Gaussian Mode Detection via Convolution Neural Networks

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hermite-Gaussian (HG) laser modes are a complete set of solutions to the free-space paraxial wave equation in Cartesian coordinates and represent a close approximation to physically-realizable laser cavity modes. Additionally, HG modes can be mode-multiplexed to significantly increase the information capacity of optical communication systems due to their orthogonality. Since, both cavity tuning and optical communication applications benefit from a machine vision determination of HG modes, convolution neural networks were implemented to detect the lowest twenty-one unique HG modes with an accuracy greater than 99%. As the effectiveness of a CNN is dependent on the diversity of its training data, extensive simulated and experimental datasets were created for training, validation and testing.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Laser beams and resonators.

          This paper is a review of the theory-of laser beams and resonators. It is meant to be tutorial in nature and useful in scope. No attempt is made to be exhaustive in the treatment. Rather, emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Creation and detection of optical modes with spatial light modulators

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Twisted light transmission over 143 km

              Light is the main carrier of information. Its spatial mode allows the encoding of more than 1 bit per photon, and thus can increase the information capacity. For communication purposes, these modes need to be transmitted over large distances. Nowadays, fiber-based solutions are in their infancy, which renders free-space transmission the only possibility. We present an experiment where we investigate the behavior of the spatial modes after a distance of 143 km. With the help of an artificial neural network, we distinguished different mode superpositions up to the third order with more than 80% accuracy. Our results indicate that with state-of-the-art adaptive optics systems, both classical communication and entanglement transmission is feasible over distances of more than 100 km. Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.
                Bookmark

                Author and article information

                Journal
                30 March 2019
                Article
                1904.00239
                6f31eada-3cd9-4bac-a39b-7459a39a97c4

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                eess.IV physics.optics

                Optical materials & Optics,Electrical engineering
                Optical materials & Optics, Electrical engineering

                Comments

                Comment on this article