50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Communication between viruses guides lysis-lysogeny decisions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temperate viruses can become dormant in their host cells, a process called lysogeny. In every infection, such viruses need to decide between the lytic and the lysogenic cycles, i.e., whether to replicate and lyse their host or to lysogenize and keep the host viable. Here we show that viruses (phages) of the spBeta group use a small-molecule communication system to coordinate lysis-lysogeny decisions. During infection of its Bacillus host cell, the phage produces a 6aa communication peptide that is released to the medium. In subsequent infections, progeny phages measure the concentration of this peptide and lysogenize if the concentration is sufficiently high. We found that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogeny decisions. We termed this communication system the “ arbitrium” system, and further show that it is encoded by 3 phage genes: aimP, producing the peptide, aimR, the intracellular peptide receptor, and aimX, a negative regulator of lysogeny. The arbitrium system enables an offspring phage to communicate with its predecessors, i.e., to estimate the amount of recent prior infections and hence decide whether to employ the lytic or lysogenic cycle.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing: cell-to-cell communication in bacteria.

          Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial gene identification using interpolated Markov models.

            This paper describes a new system, GLIMMER, for finding genes in microbial genomes. In a series of tests on Haemophilus influenzae , Helicobacter pylori and other complete microbial genomes, this system has proven to be very accurate at locating virtually all the genes in these sequences, outperforming previous methods. A conservative estimate based on experiments on H.pylori and H. influenzae is that the system finds >97% of all genes. GLIMMER uses interpolated Markov models (IMMs) as a framework for capturing dependencies between nearby nucleotides in a DNA sequence. An IMM-based method makes predictions based on a variable context; i.e., a variable-length oligomer in a DNA sequence. The context used by GLIMMER changes depending on the local composition of the sequence. As a result, GLIMMER is more flexible and more powerful than fixed-order Markov methods, which have previously been the primary content-based technique for finding genes in microbial DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.

              Riboswitches and attenuators are cis-regulatory RNA elements, most of which control bacterial gene expression via metabolite-mediated, premature transcription termination. We developed an unbiased experimental approach for genome-wide discovery of such ribo-regulators in bacteria. We also devised an experimental platform that quantitatively measures the in vivo activity of all such regulators in parallel and enables rapid screening for ribo-regulators that respond to metabolites of choice. Using this approach, we detected numerous antibiotic-responsive ribo-regulators that control antibiotic resistance genes in pathogens and in the human microbiome. Studying one such regulator in Listeria monocytogenes revealed an attenuation mechanism mediated by antibiotic-stalled ribosomes. Our results expose broad roles for conditional termination in regulating antibiotic resistance and provide a tool for discovering riboswitches and attenuators that respond to previously unknown ligands.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                14 December 2016
                18 January 2017
                26 January 2017
                18 July 2017
                : 541
                : 7638
                : 488-493
                Affiliations
                [1 ]Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
                [2 ]Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
                [3 ]Israel Structural Proteomics Center (ISPC), Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
                [4 ]de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
                Author notes
                Article
                EMS70753
                10.1038/nature21049
                5378303
                28099413
                6f832c64-ec12-4ff0-8460-87849324593e

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article