58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GeneXpert MTB/RIF Version G4 for Identification of Rifampin-Resistant Tuberculosis in a Programmatic Setting

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A recent Cochrane review estimated GeneXpert MTB/RIF specificity for rifampin resistance as 98% (95% confidence interval [CI], 97 to 99), based on results from earlier test versions. The measured positive predictive value of the new generation test from programmatic implementation in Cape Town, South Africa, was 99.5% (95% CI, 98.5 to 100), confirming excellent specificity.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Xpert® Mtb/Rif assay for pulmonary tuberculosis and rifampicin resistance in adults

          Background Accurate and rapid detection of tuberculosis (TB) and drug resistance are critical for improving patient care and decreasing the spread of TB. Xpert® MTB/RIF assay (Xpert) is a rapid, automated test that can detect both TB and rifampicin resistance, within two hours after starting the test, with minimal hands-on technical time, but is more expensive than conventional sputum microscopy. Objectives To assess the diagnostic accuracy of Xpert for pulmonary TB (TB detection), both where Xpert was used as an initial test replacing microscopy, and where Xpert was used as an add-on test following a negative smear microscopy result. To assess the diagnostic accuracy of Xpert for rifampicin resistance detection where Xpert was used as the initial test, replacing conventional culture-based drug susceptibility testing. The population of interest was adults suspected of having pulmonary TB or multidrug-resistant TB (MDR-TB), with or without HIV infection. Search methods We performed a comprehensive search of the following databases: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; ISI Web of Knowledge; MEDION; LILACS; BIOSIS; and SCOPUS. We also searched the metaRegister of Controlled Trials (mRCT) and the search portal of the WHO International Clinical Trials Registry Platform to identify ongoing trials. We performed searches on 25 September 2011 and we repeated them on 15 December 2011, without language restriction. Selection criteria We included randomized controlled trials, cross-sectional, and cohort studies that used respiratory specimens to compare Xpert with culture for detecting TB and Xpert with conventional phenotypic drug susceptibility testing for detecting rifampicin resistance. Data collection and analysis For each study, two review authors independently extracted a set of data using a standardized data extraction form. When possible, we extracted data for subgroups by smear and HIV status. We assessed the quality of studies using the QUADAS-2 tool. We carried out meta-analyses to estimate the pooled sensitivity and specificity of Xpert separately for TB detection and rifampicin resistance detection using a bivariate random-effects model. We estimated the median pooled sensitivity and specificity and their 95% credible intervals (CrI). Main results We identified 18 unique studies as eligible for this review, including two multicentre international studies, one with five and the other with six distinct study centres. The majority of studies (55.6%) were performed in low-income and middle-income countries. In 17 of the 18 studies, Xpert was performed by trained technicians in reference laboratories. When used as an initial test replacing smear microscopy (15 studies, 7517 participants), Xpert achieved a pooled sensitivity of 88% (95% CrI 83% to 92%) and pooled specificity of 98% (95% CrI 97% to 99%). As an add-on test following a negative smear microscopy result (14 studies, 5719 participants), Xpert yielded a pooled sensitivity of 67% (95% CrI 58% to 74%) and pooled specificity of 98% (95% CrI 97% to 99%). In clinical subgroups, we found the following accuracy estimates: the pooled sensitivity was 98% (95% CrI 97% to 99%) for smear-positive, culture-positive TB and 68% (95% CrI 59% to 75%) for smear-negative, culture-positive TB (15 studies); the pooled sensitivity was 80% (95% CrI 67% to 88%) in people living with HIV and 89% (95% CrI 81% to 94%) in people without HIV infection (four studies). For rifampicin resistance detection (11 studies, 2340 participants), Xpert achieved a pooled sensitivity of 94% (95% CrI 87% to 97%) and pooled specificity of 98% (95% CrI 97% to 99%). In a separate analysis, Xpert could distinguish between TB and nontuberculous mycobacteria (NTM) in clinical samples with high accuracy: among 139 specimens with NTM, Xpert was positive in only one specimen that grew NTM. In a hypothetical cohort of 1000 individuals suspected of having rifampicin resistance (a proxy for MDR-TB), where the prevalence of rifampicin resistance is 30%, we estimated that on average Xpert would wrongly identify 14 patients as being rifampicin resistant. In comparison, where the prevalence of rifampicin resistance is only 2%, we estimated that the number of individuals wrongly identified as rifampicin resistant would increase to 20, an increase of 43%. Authors' conclusions This review shows that Xpert used as an initial diagnostic test for TB detection and rifampicin resistance detection in patients suspected of having TB, MDR-TB, or HIV-associated TB is sensitive and specific. Xpert may also be valuable as an add-on test following microscopy for patients who have previously been found to be smear-negative. An Xpert result that is positive for rifampicin resistance should be carefully interpreted and take into consideration the risk of MDR-TB in a given patient and the expected prevalence of MDR-TB in a given setting. Studies in this review mainly assessed sensitivity and specificity of the test when used in reference laboratories in research investigations. Most studies were performed in high TB burden countries. Ongoing use of Xpert in high TB burden countries will contribute to the evidence base on the diagnostic accuracy and clinical impact of Xpert in routine programmatic and peripheral health care settings, including settings where the test is performed at the point of care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations.

            WHO-endorsed phenotypic drug susceptibility testing (DST) methods for Mycobacterium tuberculosis are assumed to be the gold standard for identifying rifampin (RMP) resistance. However, previous results indicated that low-level, yet probably clinically relevant, RMP resistance linked to specific rpoB mutations is easily missed by some growth-based methods. We aimed to compare the level of resistance detected on Löwenstein-Jensen (LJ) medium with resistance detected by the Bactec MGIT 960 automated DST (MGIT-DST) system for various rpoB mutants. Full agreement between LJ and MGIT-DST was observed for mutations located at codons 513 (Lys or Pro) and 531 (Leu, Trp), which were always resistant by both methods. For mutations 511Pro, 516Tyr, 533Pro, 572Phe, and several 526 mutations, LJ and MGIT results were highly discordant, with MGIT-DST failing to give a result or declaring the strains susceptible. Our data show that phenotypic RMP resistance testing of M. tuberculosis is not a binary phenomenon for some rpoB mutations and that the widely used automated MGIT 960 system is prone to miss some RMP resistance-conferring mutations, while careful DST on LJ missed hardly any. Given the association of these mutations with poor clinical outcome, our findings suggest that the gold standard for rifampin resistance should be reconsidered, in order to address the present confusion caused by discrepancies between phenotypic and genotypic results. The impacts of these mutations will depend on the frequency of their occurrence, which may vary from one setting to another.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis.

              Recent reports suggest that false-positive rifampicin resistance may be assigned by the Xpert MTB/RIF assay. We analysed 169 specimens using the MTB/RIF assay. Using culture as the gold standard, we found that the assay had 100% sensitivity and specificity for detecting M. tuberculosis. However, we found that the assay incorrectly assigned rifampicin resistance in 4/13 (31%) of cases. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Clin Microbiol
                J. Clin. Microbiol
                jcm
                jcm
                JCM
                Journal of Clinical Microbiology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0095-1137
                1098-660X
                February 2014
                February 2014
                : 52
                : 2
                : 635-637
                Affiliations
                [a ]City Health Directorate, City of Cape Town, South Africa
                [b ]National Health Laboratory Services, Cape Town, South Africa
                [c ]University of Cape Town, Medical Microbiology, Cape Town, South Africa
                [d ]National Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
                Author notes
                Address correspondence to Muhammad Osman, muhammad.osman@ 123456capetown.gov.za .
                Article
                02517-13
                10.1128/JCM.02517-13
                3911341
                24478501
                6fa1607c-10fc-41f7-b97c-67367535c502
                Copyright © 2014 Osman et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 12 September 2013
                : 4 October 2013
                : 14 November 2013
                Categories
                Mycobacteriology and Aerobic Actinomycetes

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article