16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxygen-rich microporous carbons with exceptional hydrogen storage capacity

      research-article
      , ,
      Nature Communications
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porous carbons have been extensively investigated for hydrogen storage but, to date, appear to have an upper limit to their storage capacity. Here, in an effort to circumvent this upper limit, we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m 2 g −1) and pore volume (1.8 cm 3 g −1) that arise almost entirely (>90%) from micropores, with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar, rising to a total uptake of 8.9 wt% at 30 bar, and exceptional volumetric uptake of 44 g l −1 at 20 bar, and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar, and their isosteric heat of hydrogen adsorption is above 10 kJ mol −1.

          Abstract

          Hydrogen is attractive as a clean fuel for motor vehicles and porous carbons represent promising hydrogen storage materials. Here, Mokaya and colleagues incorporate oxygen-rich functional groups into porous carbons with high microporosity, showing that such materials exhibit significantly enhanced H 2 storage capacity.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Interpretation of Raman spectra of disordered and amorphous carbon

          Physical Review B, 61(20), 14095-14107
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen storage in metal-organic frameworks.

            New materials capable of storing hydrogen at high gravimetric and volumetric densities are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other mobile applications. With exceptionally high surface areas and chemically-tunable structures, microporous metal-organic frameworks have recently emerged as some of the most promising candidate materials. In this critical review we provide an overview of the current status of hydrogen storage within such compounds. Particular emphasis is given to the relationships between structural features and the enthalpy of hydrogen adsorption, spectroscopic methods for probing framework-H(2) interactions, and strategies for improving storage capacity (188 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrahigh porosity in metal-organic frameworks.

              Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.
                Bookmark

                Author and article information

                Contributors
                r.mokaya@nottingham.ac.uk
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                16 November 2017
                16 November 2017
                2017
                : 8
                : 1545
                Affiliations
                ISNI 0000 0004 1936 8868, GRID grid.4563.4, School of Chemistry, , University of Nottingham, University Park, ; Nottingham, NG7 2RD UK
                Article
                1633
                10.1038/s41467-017-01633-x
                5691040
                29146978
                6fb0a09d-7893-4a5b-aa20-14bd4efb21d0
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 May 2017
                : 5 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article