25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants.

          Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

            Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.

              Drought is a major threat to agricultural production. Plants synthesize the hormone abscisic acid (ABA) in response to drought, triggering a signalling cascade in guard cells that results in stomatal closure, thus reducing water loss. ABA triggers an increase in cytosolic calcium in guard cells ([Ca2+]cyt) that has been proposed to include Ca2+ influx across the plasma membrane. However, direct recordings of Ca2+ currents have been limited and the upstream activation mechanisms of plasma membrane Ca2+ channels remain unknown. Here we report activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide. The H2O2-activated Ca2+ channels mediate both influx of Ca2+ in protoplasts and increases in [Ca2+]cyt in intact guard cells. ABA induces the production of H2O2 in guard cells. If H2O2 production is blocked, ABA-induced closure of stomata is inhibited. Moreover, activation of Ca2+ channels by H2O2 and ABA- and H2O2-induced stomatal closing are disrupted in the recessive ABA-insensitive mutant gca2. These data indicate that ABA-induced H2O2 production and the H2O2-activated Ca2+ channels are important mechanisms for ABA-induced stomatal closing.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                February 19 2020
                Article
                10.1038/s41586-020-2032-3
                32076270
                6fc7bb35-3c28-4000-aa28-9300f5b209b8
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article