5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Peptidoglycan sensing prevents quiescence and promotes quorum-independent growth of uropathogenic Escherichia coli

      Preprint
      , , , , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The layer of peptidoglycan surrounding bacteria provides structural integrity for the bacterial cell wall. Many organisms, including human cells and diverse bacteria, detect peptidoglycan fragments that are released as bacteria grow. Uropathogenic Escherichia coli (UPEC) strains are the leading cause of human urinary tract infections (UTIs) and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and, thus, are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the sole carbon source; at low density, the bacteria remain viable but enter a quiescent, non-proliferative state. Of all clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including archetypal strains CFT073 (from classic endemic lineage ST73) and JJ1886 (from recently emerged, multidrug-resistant pandemic lineage ST131). We further show that quorum-dependent UPEC quiescence is prevented and reversed by small molecules, called proliferants, that stimulate growth, such as L-lysine, L-methionine, and peptidoglycan (PG) stem peptides, including an isolated PG pentapeptide from Staphylococcus aureus. Together, our results indicate that (i) uptake of L-lysine and (ii) PG peptide sensing by UPEC modulate the quorum-regulated decision to proliferate and further demonstrate that PG fragments are important for intra- and interspecies signaling in pathogenic E. coli.

          Related collections

          Author and article information

          Journal
          bioRxiv
          November 04 2019
          Article
          10.1101/830877
          706ac8cd-98aa-4855-a054-04f279f28e12
          © 2019
          History

          Microbiology & Virology
          Microbiology & Virology

          Comments

          Comment on this article