1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Confusoside from Anneslea fragrans Alleviates Acetaminophen-Induced Liver Injury in HepG2 via PI3K-CASP3 Signaling Pathway

      , , , , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Confusoside (CF), a major chemical compound in the leaves of Anneslea fragrans Wall., is a dihydrochalcone glycoside with excellent antioxidant and anti-inflammatory effects. However, the hepatoprotective effect of CF has not been described. This study aimed to explore the hepatoprotective effect of CF against acetaminophen (APAP)-induced hepatic injury in HepG2 cells. First, the potential hepatoprotective effect mechanisms of CF were predicted by network pharmacology and were thought to involve reducing inflammation and inhibiting apoptosis. Target proteins (phosphatidylinositol3-kinase (PI3K) and caspase-3 (CASP3)) were found via molecular docking analysis. To verify the predicted results, an analysis of biological indicators was performed using commercial kits and Western blotting. The results showed that CF significantly decreased the levels of liver injury biomarkers (ALT, AST, and LDH), strongly inhibited the production of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the NO level via inhibiting the activation of the NF-κB signaling pathway, and markedly regulated the expression levels of Bcl2, Bax, and cleaved-CASP3/9 proteins by activating the PI3K-CASP3 apoptosis pathway. The results demonstrated that CF has a therapeutic effect on APAP-induced liver injury by inhibiting intracellular inflammation and cell apoptosis, indicating that CF may be used as a potential reagent for the prevention and treatment of APAP-induced liver injury.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            clusterProfiler: an R package for comparing biological themes among gene clusters.

            Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

              AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                February 2023
                February 17 2023
                : 28
                : 4
                : 1932
                Article
                10.3390/molecules28041932
                9964309
                36838918
                706b10d5-d942-4d27-be85-90ff0913df04
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article