26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effective antigen presentation by dendritic cells is NF-κB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines

      , , , ,
      International Immunology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antigen presentation is a key rate-limiting step in the immune response. Dendritic cells (DC) are the most potent antigen-presenting cells for naive T cells, due to their high expression of MHC and co-stimulatory molecules, but little is known about the biochemical pathways that regulate this function. We here demonstrate that monocyte-derived mature DC can be infected with adenovirus at high efficiency (>95%) and that this procedure can be used to dissect out which pathways are essential for inducing DC antigen presentation to naive T cells. Using adenoviral transfer of the endogenous inhibitor of NF-kappaB, IkappaBalpha, we show that DC antigen presentation is NF-kappaB dependent. The mechanism for this is that NF-kappaB is essential for three aspects of antigen-presenting function: blocking NF-kappaB coordinately down-regulates HLA class II, co-stimulatory molecules like CD80, CD86 and CD40, and immuno-stimulatory cytokines like IL-12 and tumor necrosis factor-alpha. In contrast adhesion molecules are up-regulated after infection with the adenovirus transferring IkappaBalpha, indicating that NF-kappaB also regulates the duration of T cell-DC interaction. These results establish NF-kappaB as an effective target for blocking DC antigen presentation and inhibiting T cell-dependent immune responses, and this finding has potential implications for the development of therapeutic agents for use in allergy, autoimmunity and transplantation.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          An essential role for NF-kappaB in preventing TNF-alpha-induced cell death.

          Studies on mice deficient in nuclear factor kappa B (NF-kappaB) subunits have shown that this transcription factor is important for lymphocyte responses to antigens and cytokine-inducible gene expression. In particular, the RelA (p65) subunit is required for induction of tumor necrosis factor-alpha (TNF-alpha)-dependent genes. Treatment of RelA-deficient (RelA-/-) mouse fibroblasts and macrophages with TNF-alpha resulted in a significant reduction in viability, whereas RelA+/+ cells were unaffected. Cytotoxicity to both cell types was mediated by TNF receptor 1. Reintroduction of RelA into RelA-/- fibroblasts resulted in enhanced survival, demonstrating that the presence of RelA is required for protection from TNF-alpha. These results have implications for the treatment of inflammatory and proliferative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.

            Tumor necrosis factor (TNF) can induce apoptosis and activate NF-kappa B through signaling cascades emanating from TNF receptor 1 (TNFR1). TRADD is a TNFR1-associated signal transducer that is involved in activating both pathways. Here we show that TRADD directly interacts with TRAF2 and FADD, signal transducers that activate NF-kappa B and induce apoptosis, respectively. A TRAF2 mutant lacking its N-terminal RING finger domain is a dominant-negative inhibitor of TNF-mediated NF-kappa B activation, but does not affect TNF-induced apoptosis. Conversely, a FADD mutant lacking its N-terminal 79 amino acids is a dominant-negative inhibitor of TNF-induced apoptosis, but does not inhibit NF-kappa B activation. Thus, these two TNFR1-TRADD signaling cascades appear to bifurcate at TRADD.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Suppression of TNF-alpha -Induced Apoptosis by NF-kappa B

                Bookmark

                Author and article information

                Journal
                International Immunology
                Oxford University Press (OUP)
                1460-2377
                0953-8178
                May 2001
                May 01 2001
                May 2001
                May 2001
                May 01 2001
                May 2001
                : 13
                : 5
                : 675-683
                Article
                10.1093/intimm/13.5.675
                11312255
                706b2b50-1cce-4fed-9afb-1d1ff1bd63b4
                © 2001
                History

                Comments

                Comment on this article