17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preliminary evidence that both blue and red light can induce alertness at night

      research-article
      1 , , 1 , 1 , 1
      BMC Neuroscience
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A variety of studies have demonstrated that retinal light exposure can increase alertness at night. It is now well accepted that the circadian system is maximally sensitive to short-wavelength (blue) light and is quite insensitive to long-wavelength (red) light. Retinal exposures to blue light at night have been recently shown to impact alertness, implicating participation by the circadian system. The present experiment was conducted to look at the impact of both blue and red light at two different levels on nocturnal alertness. Visually effective but moderate levels of red light are ineffective for stimulating the circadian system. If it were shown that a moderate level of red light impacts alertness, it would have had to occur via a pathway other than through the circadian system.

          Methods

          Fourteen subjects participated in a within-subject two-night study, where each participant was exposed to four experimental lighting conditions. Each night each subject was presented a high (40 lx at the cornea) and a low (10 lx at the cornea) diffuse light exposure condition of the same spectrum (blue, λ max = 470 nm, or red, λ max = 630 nm). The presentation order of the light levels was counterbalanced across sessions for a given subject; light spectra were counterbalanced across subjects within sessions. Prior to each lighting condition, subjects remained in the dark (< 1 lx at the cornea) for 60 minutes. Electroencephalogram (EEG) measurements, electrocardiogram (ECG), psychomotor vigilance tests (PVT), self-reports of sleepiness, and saliva samples for melatonin assays were collected at the end of each dark and light periods.

          Results

          Exposures to red and to blue light resulted in increased beta and reduced alpha power relative to preceding dark conditions. Exposures to high, but not low, levels of red and of blue light significantly increased heart rate relative to the dark condition. Performance and sleepiness ratings were not strongly affected by the lighting conditions. Only the higher level of blue light resulted in a reduction in melatonin levels relative to the other lighting conditions.

          Conclusion

          These results support previous findings that alertness may be mediated by the circadian system, but it does not seem to be the only light-sensitive pathway that can affect alertness at night.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor.

          The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness.

            Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to <3 lux for several hours. Light exerted an acute alerting response as assessed by a reduction in the incidence of slow-eye movements, a reduction of EEG activity in the theta-alpha frequencies (power density in the 5-9 Hz range) as well as a reduction in self-reported sleepiness. This alerting response was positively correlated with the degree of melatonin suppression by light. In accordance with the dose response function for circadian resetting and melatonin suppression, the responses of all three indices of alertness to variations in illuminance were consistent with a logistic dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Life between clocks: daily temporal patterns of human chronotypes.

              Human behavior shows large interindividual variation in temporal organization. Extreme "larks" wake up when extreme "owls" fall asleep. These chronotypes are attributed to differences in the circadian clock, and in animals, the genetic basis of similar phenotypic differences is well established. To better understand the genetic basis of temporal organization in humans, the authors developed a questionnaire to document individual sleep times, self-reported light exposure, and self-assessed chronotype, considering work and free days separately. This report summarizes the results of 500 questionnaires completed in a pilot study individual sleep times show large differences between work and free days, except for extreme early types. During the workweek, late chronotypes accumulate considerable sleep debt, for which they compensate on free days by lengthening their sleep by several hours. For all chronotypes, the amount of time spent outdoors in broad daylight significantly affects the timing of sleep: Increased self-reported light exposure advances sleep. The timing of self-selected sleep is multifactorial, including genetic disposition, sleep debt accumulated on workdays, and light exposure. Thus, accurate assessment of genetic chronotypes has to incorporate all of these parameters. The dependence of human chronotype on light, that is, on the amplitude of the light:dark signal, follows the known characteristics of circadian systems in all other experimental organisms. Our results predict that the timing of sleep has changed during industrialization and that a majority of humans are sleep deprived during the workweek. The implications are far ranging concerning learning, memory, vigilance, performance, and quality of life.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2009
                27 August 2009
                : 10
                : 105
                Affiliations
                [1 ]Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
                Article
                1471-2202-10-105
                10.1186/1471-2202-10-105
                2744917
                19712442
                70e3f826-9370-4ed4-b5cf-0776d21c3105
                Copyright © 2009 Figueiro et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2008
                : 27 August 2009
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article