18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7).

      Journal of Molecular Medicine (Berlin, Germany)
      Arginine, genetics, metabolism, Biglycan, Cell Proliferation, Cells, Cultured, Collagen, Decorin, Ehlers-Danlos Syndrome, pathology, Extracellular Matrix Proteins, Fibroblasts, Galactosyltransferases, Glycosylation, Humans, Microscopy, Electron, Transmission, Phenotype, Proteoglycans, Skin, Temperature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders affecting skin and joint function. Molecular defects in extracellular matrix proteins, including collagen (type I, III, and V) and tenascin X are associated with different forms of EDS. Compound heterozygous mutations in the B4GALT7 gene, resulting in aberrant glycosylation of the dermatan sulfate proteoglycan decorin, had been described in a single patient affected with the progeroid form of EDS. We have studied the molecular phenotype of decorin, biglycan, and collagen type I containing fibrils in skin fibroblasts of a patient carrying the novel homozygous C808T point mutation in the B4GALT7 gene, which causes an Arg270Cys substitution in beta4GalT-7. Compared to control fibroblasts, galactosyltransferase activity in beta4GalT-7(Arg270Cys) cells was approximately three times reduced over a temperature range of 25-41 degrees C. Pulse-chase experiments and confocal microscopy demonstrated that synthesis and secretion of decorin were normal in beta4GalT-7(Arg270Cys) cells. However, about 50% of decorin were synthesized as a protein core in addition to its proteoglycan form. Biglycan was found in a monoglycanated form in addition to its mature form. Glycosaminoglycan chains were of the dermatan/chondroitin sulfate type both in beta4GalT-7(Arg270Cys) and control cells, and epimerization was reduced for decorin and biglycan. Compared to control cells, beta4GalT-7(Arg270Cys) cells showed altered, highly spread or stretched phenotypes and decreased proliferation rates. At the ultrastructural level, an intracellular accumulation of multiple secondary lysosomes and degenerative vacuoles was seen in beta4GalT-7(Arg270Cys) cells. Furthermore, the collagen suprastructures were altered in the beta4GalT-7(Arg270Cys) cells. The reduced beta4GalT-7 activity resulting in defective glycosylation of decorin and biglycan may be responsible for the complex molecular pathology in beta4GalT-7 deficient EDS patients, given the role of these proteoglycans in bone formation, collagen fibrillogenesis, and skeletal muscle development.

          Related collections

          Author and article information

          Comments

          Comment on this article