6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Intradialytic Cardiac Magnetic Resonance Imaging to Assess Cardiovascular Responses in a Short-Term Trial of Hemodiafiltration and Hemodialysis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemodynamic stress during hemodialysis (HD) results in recurrent segmental ischemic injury (myocardial stunning) that drives cumulative cardiac damage. We performed a fully comprehensive study of the cardiovascular effect of dialysis sessions using intradialytic cardiac magnetic resonance imaging (MRI) to examine the comparative acute effects of standard HD versus hemodiafiltration (HDF) in stable patients. We randomly allocated 12 patients on HD (ages 32-72 years old) to either HD or HDF. Patients were stabilized on a modality for 2 weeks before undergoing serial cardiac MRI assessment during dialysis. Patients then crossed over to the other modality and were rescanned after 2 weeks. Cardiac MRI measurements included cardiac index, stroke volume index, global and regional contractile function (myocardial strain), coronary artery flow, and myocardial perfusion. Patients had mean±SEM ultrafiltration rates of 3.8±2.9 ml/kg per hour during HD and 4.4±2.5 ml/kg per hour during HDF (P=0.29), and both modalities provided a similar degree of cooling. All measures of systolic contractile function fell during HD and HDF, with partial recovery after dialysis. All patients experienced some degree of segmental left ventricular dysfunction, with severity proportional to ultrafiltration rate and BP reduction. Myocardial perfusion decreased significantly during HD and HDF. Treatment modality did not influence any of the cardiovascular responses to dialysis. In conclusion, in this randomized, crossover study, there was no significant difference in the cardiovascular response to HDF or HD with cooled dialysate as assessed with intradialytic MRI.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Myocardial strain imaging: how useful is it in clinical decision making?

          Myocardial strain is a principle for quantification of left ventricular (LV) function which is now feasible with speckle-tracking echocardiography. The best evaluated strain parameter is global longitudinal strain (GLS) which is more sensitive than left ventricular ejection fraction (LVEF) as a measure of systolic function, and may be used to identify sub-clinical LV dysfunction in cardiomyopathies. Furthermore, GLS is recommended as routine measurement in patients undergoing chemotherapy to detect reduction in LV function prior to fall in LVEF. Intersegmental variability in timing of peak myocardial strain has been proposed as predictor of risk of ventricular arrhythmias. Strain imaging may be applied to guide placement of the LV pacing lead in patients receiving cardiac resynchronization therapy. Strain may also be used to diagnose myocardial ischaemia, but the technology is not sufficiently standardized to be recommended as a general tool for this purpose. Peak systolic left atrial strain is a promising supplementary index of LV filling pressure. The strain imaging methodology is still undergoing development, and further clinical trials are needed to determine if clinical decisions based on strain imaging result in better outcome. With this important limitation in mind, strain may be applied clinically as a supplementary diagnostic method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hemodialysis-induced cardiac injury: determinants and associated outcomes.

            Hemodialysis (HD)-induced myocardial stunning driven by ischemia is a recognized complication of HD, which can be ameliorated by HD techniques that improve hemodynamics. In nondialysis patients, repeated ischemia leads to chronic reduction in left ventricular (LV) function. HD may initiate and drive the same process. In this study, we examined the prevalence and associations of HD-induced repetitive myocardial injury and long-term effects on LV function and patient outcomes. Seventy prevalent HD patients were assessed for evidence of subclinical myocardial injury at baseline using serial echocardiography and followed up after 12 mo. Intradialytic blood pressure, hematologic and biochemical samples, and patient demographics were also collected at both time points. Sixty-four percent of patients had significant myocardial stunning during HD. Age, ultrafiltration volumes, intradialytic hypotension, and cardiac troponin-T (cTnT) levels were independent determinants associated with its presence. Myocardial stunning was associated with increased relative mortality at 12 mo (P = 0.019). Cox regression analysis showed increased hazard of death in patients with myocardial stunning and elevated cTnT than in patients with elevated cTnT alone (P < 0.02). Patients with myocardial stunning who survived 12 mo had significantly lower LV ejection fractions at rest and on HD (P < 0.001). HD-induced myocardial stunning is common, and may contribute to the development of heart failure and increased mortality in HD patients. Enhanced understanding of dialysis-induced cardiac injury may provide novel therapeutic targets to reduce currently excessive rates of cardiovascular morbidity and mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of hemodialysis on cardiac function.

              Hemodialysis (HD) patients are subject to an enormous excess of cardiovascular morbidity and mortality. This appears to be largely driven by factors that are different from those at play in the general population. Chronic HD patients are already primed by a large number of structural and functional peripheral vascular and cardiac abnormalities to experience demand myocardial ischemia. Conventional HD is capable of inducing myocardial ischemia. Recurrent ischemic insults lead to myocardial functional and structural changes, eventually resulting in fixed systolic dysfunction and heart failure (conferring a dismal prognosis for patients undergoing dialysis). Modifications of the HD process to improve the hemodynamic tolerability of the treatment have been shown to reduce the perturbation of myocardial blood flow and functional evidence of dialysis-induced ischemia. Although it is uncomfortable to consider that much of the observed disease burden in HD patients may be an artifact of current dialysis treatment regimes, understanding the role that conventional dialysis plays in the pathophysiology of cardiac injury in HD patients has the potential to provide us with additional dialysis, and non-dialysis, based novel therapeutic targets to reduce currently excessive rates of cardiovascular morbidity and mortality.
                Bookmark

                Author and article information

                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                March 31 2017
                April 10 2017
                : 28
                : 4
                : 1269-1277
                Article
                10.1681/ASN.2016060686
                5373461
                28122851
                70f0a04d-b947-40f5-acf6-7b29fe45476f
                © 2017
                History

                Comments

                Comment on this article