5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of apoptosis-linked protein ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins.

      Structure(London, England:1993)
      Animals, Apoptosis, Apoptosis Regulatory Proteins, Binding Sites, Calcium, metabolism, Calcium-Binding Proteins, chemistry, genetics, Carrier Proteins, Crystallography, X-Ray, Dimerization, EF Hand Motifs, Mice, Models, Molecular, Protein Binding, Protein Structure, Tertiary, Recombinant Proteins, Static Electricity, Two-Hybrid System Techniques

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Ca2+ binding apoptosis-linked gene-2 (ALG-2) protein acts as a proapoptotic factor in a variety of cell lines and is required either downstream or independently of caspases for apoptosis to occur. ALG-2 belongs to the penta-EF-hand (PEF) protein family and has two high-affinity and one low-affinity Ca2+ binding sites. Like other PEF proteins, its N terminus contains a Gly/Pro-rich segment. Ca2+ binding is required for the interaction with the target protein, ALG-2 interacting protein 1 (AIP1). We present the 2.3 A resolution crystal structure of Ca2+-Ioaded des1-20ALG-2 (aa 21-191), which was obtained by limited proteolysis of recombinant ALG-2 with elastase. The molecule contains eight alpha helices that fold into five EF-hands, and, similar to other members of this protein family, the molecule forms dimers. Ca2+ ions bind to EF1, EF3, and, surprisingly, to EF5. In the related proteins calpain and grancalcin, the EF5 does not bind Ca2+ and is thought to primarily facilitate dimerization. Most importantly, the conformation of des1-20ALG-2 is significantly different from that of calpain and grancalcin. This difference can be described as a rigid body rotation of EF1-2 relative to EF4-5 and the dimer interface, with a hinge within the EF3 loop. An electron density, which is interpreted as a hydrophobic Gly/Pro-rich decapeptide that is possibly derived from the cleaved N terminus, was found in a hydrophobic cleft between these two halves of the molecule. A different relative orientation of the N- and C-terminal halves of des1-20ALG-2 in the presence of Ca2+ and the peptide as compared to other Ca2+loaded PEF proteins changes substantially the shape of the molecule, exposing a hydrophobic patch on the surface for peptide binding and a large cleft near the dimer interface. We postulate that the binding of a Gly/ Pro-rich peptide in the presence of Ca2+ induces a conformational rearrangement in ALG-2, and that this mechanism is common to other PEF proteins.

          Related collections

          Author and article information

          Comments

          Comment on this article