7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Association between the Oxytocin Receptor Gene Polymorphism (rs53576) and Bulimia Nervosa : OXTR and Eating Disorders

      , , , ,
      European Eating Disorders Review
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxytocin circuits are implicated in the regulation of appetite and weight. Variants in the oxytocin receptor (OXTR) gene have been associated with bulimic behaviour. This study aimed to investigate the association between the OXTR gene and eating disorders.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study of global gene expression.

          We have created a global map of the effects of polymorphism on gene expression in 400 children from families recruited through a proband with asthma. We genotyped 408,273 SNPs and identified expression quantitative trait loci from measurements of 54,675 transcripts representing 20,599 genes in Epstein-Barr virus-transformed lymphoblastoid cell lines. We found that 15,084 transcripts (28%) representing 6,660 genes had narrow-sense heritabilities (H2) > 0.3. We executed genome-wide association scans for these traits and found peak lod scores between 3.68 and 59.1. The most highly heritable traits were markedly enriched in Gene Ontology descriptors for response to unfolded protein (chaperonins and heat shock proteins), regulation of progression through the cell cycle, RNA processing, DNA repair, immune responses and apoptosis. SNPs that regulate expression of these genes are candidates in the study of degenerative diseases, malignancy, infection and inflammation. We have created a downloadable database to facilitate use of our findings in the mapping of complex disease loci.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior.

            Social neuroscience is rapidly exploring the complex territory between perception and action where recognition, value, and meaning are instantiated. This review follows the trail of research on oxytocin and vasopressin as an exemplar of one path for exploring the "dark matter" of social neuroscience. Studies across vertebrate species suggest that these neuropeptides are important for social cognition, with gender- and steroid-dependent effects. Comparative research in voles yields a model based on interspecies and intraspecies variation of the geography of oxytocin receptors and vasopressin V1a receptors in the forebrain. Highly affiliative species have receptors in brain circuits related to reward or reinforcement. The neuroanatomical distribution of these receptors may be guided by variations in the regulatory regions of their respective genes. This review describes the promises and problems of extrapolating these findings to human social cognition, with specific reference to the social deficits of autism. (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetics of human social behavior.

              Human beings are an incredibly social species and along with eusocial insects engage in the largest cooperative living groups in the planet's history. Twin and family studies suggest that uniquely human characteristics such as empathy, altruism, sense of equity, love, trust, music, economic behavior, and even politics are partially hardwired. The leap from twin studies to identifying specific genes engaging the social brain has occurred in the past decade, aided by deep insights accumulated about social behavior in lower mammals. Remarkably, genes such as the arginine vasopressin receptor and the oxytocin receptor contribute to social behavior in a broad range of species from voles to man. Other polymorphic genes constituting the "usual suspects"--i.e., those encoding for dopamine reward pathways, serotonergic emotional regulation, or sex hormones--further enable elaborate social behaviors. (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                European Eating Disorders Review
                Eur. Eat. Disorders Rev.
                Wiley-Blackwell
                10724133
                May 2015
                May 15 2015
                : 23
                : 3
                : 171-178
                Article
                10.1002/erv.2354
                25773927
                71135600-b703-4e97-9de8-6722e6f2cbea
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article