13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRIM21 is a novel regulator of Par-4 in colon and pancreatic cancer cells

      research-article
      ,
      Cancer Biology & Therapy
      Taylor & Francis
      Cisplatin, colon cancer, pancreatic cancer, Par-4, prognosis, proteasome, TRIM21

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The prostate apoptosis response protein 4 (Par-4) is a tumor-suppressor that has been shown to induce cancer-cell selective apoptosis in a variety of cancers. The regulation of Par-4 expression and activity is a relatively understudied area, and identifying novel regulators of Par-4 may serve as novel therapeutic targets. To identify novel regulators of Par-4, a co-immunoprecipitation was performed in colon cancer cells, and co-precipitated proteins were identified by mass-spectometry. TRIM21 was identified as a novel interacting partner of Par-4, and further shown to interact with Par-4 endogenously and through its PRY-SPRY domain. Additional studies show that TRIM21 downregulates Par-4 levels in response to cisplatin, and that TRIM21 can increase the resistance of colon cancer cells to cisplatin. Furthermore, forced Par-4 expression can sensitize pancreatic cancer cells to cisplatin. Finally, we demonstrate that TRIM21 expression predicts survival in pancreatic cancer patients. Our work highlights a novel mechanism of Par-4 regulation, and identifies a novel prognostic marker and potential therapeutic target for pancreatic cancer.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.

            Induction of type I IFNs is a fundamental cellular response to both viral and bacterial infection. The role of the transcription factor IRF3 is well established in driving this process. However, equally as important are cellular mechanisms for turning off type I IFN production to limit this response. In this respect, IRF3 has previously been shown to be targeted for ubiquitin-mediated degradation postviral detection to turn off the IFN-beta response. In this study, we provide evidence that the E3 ligase Ro52 (TRIM21) targets IRF3 for degradation post-pathogen recognition receptor activation. We demonstrate that Ro52 interacts with IRF3 via its C-terminal SPRY domain, resulting in the polyubiquitination and proteasomal degradation of the transcription factor. Ro52-mediated IRF3 degradation significantly inhibits IFN-beta promoter activity, an effect that is reversed in the presence of the proteasomal inhibitor MG132. Specific targeting of Ro52 using short hairpin RNA rescues IRF3 degradation following polyI:C-stimulation of HEK293T cells, with a subsequent increase in IFN-beta production. Additionally, shRNA targeting of murine Ro52 enhances the production of the IRF3-dependent chemokine RANTES following Sendai virus infection of murine fibroblasts. Collectively, this demonstrates a novel role for Ro52 in turning off and thus limiting IRF3-dependent type I IFN production by targeting the transcription factor for polyubiquitination and subsequent proteasomal degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells.

              Deletion or mutation of the androgen receptor (AR) renders prostate tumors refractory to apoptosis by androgen ablation, the mainstay of prostate cancer therapy. To identify novel therapeutics that can induce apoptosis regardless of the AR status of prostate cancer cells, we screened dietary herbal compounds using a reporter assay for the prostate apoptosis response-4 (Par-4) gene, which induces p53- and PTEN-independent and cancer-selective apoptosis. One of the compounds, withaferin A (WA), a major constituent of the dietary compound Withania somnifera, induced Par-4-dependent apoptosis in androgen-refractory prostate cancer cells and regression of PC-3 xenografts in nude mice. Interestingly, restoration of wild-type AR in PC-3 (AR negative) cells abrogated both Par-4 induction and apoptosis by WA. Individually, WA and anti-androgens induced neither Par-4 nor apoptosis in androgen-responsive prostate cancer cells, yet in combination, WA and anti-androgen synergistically induced Par-4 and apoptosis in androgen-responsive prostate cancer cells. Thus, when judiciously combined with anti-androgens, WA inhibits survival of both androgen-responsive and androgen-refractory prostate cancer cells by a Par-4-dependent mechanism. As Par-4 up-regulation induces apoptosis in most tumor cells, our findings can be extended to high-throughput screens to identify synergistic combinations for both therapy-sensitive and therapy-resistant cancers.
                Bookmark

                Author and article information

                Journal
                Cancer Biol Ther
                Cancer Biol. Ther
                KCBT
                kcbt20
                Cancer Biology & Therapy
                Taylor & Francis
                1538-4047
                1555-8576
                2017
                10 November 2016
                10 November 2016
                : 18
                : 1
                : 16-25
                Affiliations
                Department of Medicine and Penn State Hershey Cancer Institute, Penn State College of Medicine , Hershey, PA, USA
                Author notes
                CONTACT Rosalyn B. Irby rirby@ 123456hmc.psu.edu , 500 University Drive, Hershey, PA, 17033, USA
                Article
                1252880
                10.1080/15384047.2016.1252880
                5323013
                27830973
                71c54d2d-6aff-41d6-b69b-db6b766a5af0
                © 2017 The Author(s). Published with license by Taylor & Francis Group, LLC

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 18 July 2016
                : 13 October 2016
                : 16 October 2016
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 43, Pages: 10
                Categories
                Research Paper

                Oncology & Radiotherapy
                cisplatin,colon cancer,pancreatic cancer,par-4,prognosis,proteasome,trim21
                Oncology & Radiotherapy
                cisplatin, colon cancer, pancreatic cancer, par-4, prognosis, proteasome, trim21

                Comments

                Comment on this article