1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Antibacterial and Anticancer Characteristics of Silver Nanoparticles Synthesized from Plant Extracts of Wrightia tinctoria and Acacia chundra

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study showed the ability to synthesize environmentally friendly silver nanoparticles (AgNPs) using extracts from Wrightia tinctoria seeds and Acacia chundra stems. Surface plasmon resonance peaks in the UV-Vis absorption spectra of both plant extracts verified AgNP synthesis. The structural and morphological properties of the AgNPs were investigated using analytical techniques such as XRD, FTIR, TEM, and EDAX. The AgNPs have an FCC crystalline structure, according to XRD study, and their sizes range from 20 to 40 nm, according to TEM images. Based on the results, these plant extracts have been identified as suitable bioresources for AgNP production. The study also showed that both AgNPs had significant levels of antibacterial activity when tested on four different microbial strains using the agar-well diffusion method. The bacteria tested included two Gram-positive strains ( Staphylococcus aureus and Micrococcus luteus) and two Gram-negative strains ( Proteus vulgaris and Escherichia coli). Furthermore, the AgNPs were found to have a significant anticancer effect on MCF-7 cell lines, suggesting that they may be useful in therapeutic applications. Overall, this research highlights the potential of the plant extracts considered as a source for synthesizing eco-friendly AgNPs with potential applications in medicine and other fields.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.

          In the present study, biosynthesis of silver nanoparticles and its activity on water borne bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using leaf extract of Acalypha indica and the formation of nanoparticles was observed within 30min. The results recorded from UV-vis spectrum, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) support the biosynthesis and characterization of silver nanoparticles. From high-resolution transmission electron microscopy (HRTEM) analysis, the size of the silver nanoparticles was measured 20-30nm. Further, the antibacterial activity of synthesized silver nanoparticles showed effective inhibitory activity against water borne pathogens Viz., Escherichia coli and Vibrio cholerae. Silver nanoparticles 10microg/ml were recorded as the minimal inhibitory concentration (MIC) against E. coli and V. cholerae. Alteration in membrane permeability and respiration of the silver nanoparticle treated bacterial cells were evident from the activity of silver nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature

            Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines

              Biosynthesized nanoparticles are gaining attention because of biologically active plant secondary metabolites that help in green synthesis and also due to their unique biological applications. This study reports a facile, ecofriendly, reliable, and cost-effective synthesis of silver nanoparticles using the aqueous leaf extract of Cucumis prophetarum (C. prophetarum) and their antibacterial and antiproliferative activity. Silver nanoparticles were biosynthesized using the aqueous leaf extract of C. prophetarum, which acted as a reducing and capping agent. The biosynthesized C. prophetarum silver nanoparticles (Cp-AgNPs) were characterized using different techniques, such as UV–visible spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDAX). Phytochemical analysis was performed to determine the phytochemicals responsible for the reduction and capping of the biosynthesized Cp-AgNPs. The antioxidant activity of the biosynthesized nanoparticles was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Their antibacterial activity was checked against Staphylococcus aureus (Gram-positive) and Salmonella typhi (Gram-negative) bacteria. The biosynthesized nanoparticles showed dosage-dependent inhibition activity with a significant zone of inhibition and were more effective toward S. typhi as compared to S. aureus. Their antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on selected cancer cell lines. The IC50 values of Cp-AgNPs on A549, MDA-MB-231, HepG2, and MCF-7 were found to be 105.8, 81.1, 94.2, and 65.6 μg/mL, respectively, and this showed that the Cp-AgNPs were more potent toward MCF-7 as compared to other cell lines used in this study. This work revealed that the biosynthesized silver nanoparticles using C. prophetarum leaf extract were associated with good antibacterial activity and antiproliferative potential against selected cancer cell lines. The biosynthesized C. prophetarum AgNPs can be further exploited as a potential candidate for antioxidant, antibacterial, and anticancer agents.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Anal Chem
                Int J Anal Chem
                ijac
                International Journal of Analytical Chemistry
                Hindawi
                1687-8760
                1687-8779
                2023
                20 March 2023
                : 2023
                : 6352503
                Affiliations
                1Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai-602105, India
                2Department of Chemical Engineering, Mettu University, Metu, Ethiopia
                Author notes

                Academic Editor: Kevin Honeychurch

                Author information
                https://orcid.org/0000-0003-0368-7832
                https://orcid.org/0000-0002-3799-9351
                Article
                10.1155/2023/6352503
                10042639
                36992867
                71f33a83-fd1c-47b5-ac03-467787e2a06f
                Copyright © 2023 Anitha Jegadeeshwari et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2022
                : 7 March 2023
                : 9 March 2023
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article