13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Different mechanisms in the tumorigenesis of proximal and distal colon cancers :

      Current Opinion in Oncology
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic instabilities in human cancers.

          Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis.

            Spontaneous errors in DNA replication have been suggested to play a significant role in neoplastic transformation and to explain the chromosomal alterations seen in cancer cells. A defective replication factor could increase the mutation rate in clonal variants arising during tumour progression, but despite intensive efforts, increases in tumour cell mutation rates have not been unambiguously shown. Here we use an unbiased genomic fingerprinting technique to show that 12 per cent of colorectal carcinomas carry somatic deletions in poly(dA.dT) sequences and other simple repeats. We estimate that cells from these tumours can carry more than 100,000 such mutations. Only tumours with affected poly(dA.dT) sequences carry mutations in the other simple repeats examined, and such mutations can be found in all neoplastic regions of multiple tumours from the same patient, including adenomas. Tumours with these mutations show distinctive genotypic and phenotypic features. We conclude that these mutations reflect a previously undescribed form of carcinogenesis in the colon (predisposition to which may be inherited) mediated by a mutation in a DNA replication factor resulting in reduced fidelity for replication or repair (a 'mutator mutation').
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microsatellite instability in cancer of the proximal colon

              Colorectal tumor DNA was examined for somatic instability at (CA)n repeats on human chromosomes 5q, 15q, 17p, and 18q. Differences between tumor and normal DNA were detected in 25 of the 90 (28 percent) tumors examined. This instability appeared as either a substantial change in repeat length (often heterogeneous in nature) or a minor change (typically two base pairs). Microsatellite instability was significantly correlated with the tumor's location in the proximal colon (P = 0.003), with increased patient survival (P = 0.02), and, inversely, with loss of heterozygosity for chromosomes 5q, 17p, and 18q. These data suggest that some colorectal cancers may arise through a mechanism that does not necessarily involve loss of heterozygosity.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Oncology
                Current Opinion in Oncology
                Ovid Technologies (Wolters Kluwer Health)
                1040-8746
                2001
                January 2001
                : 13
                : 1
                : 63-69
                Article
                10.1097/00001622-200101000-00013
                720a7a7b-df3e-4424-9ccd-e9ef43b63cb8
                © 2001
                History

                Comments

                Comment on this article