Joseph C.K. Leung a , Loretta Y.Y. Chan a , Sydney C.W. Tang a , P.C. Tam b , John Fenn c , Kar Neng Lai a
23 October 2007
Background: IgA nephropathy (IgAN) is characterized by mesangial deposition of polymeric IgA1 (pIgA1), yet the pathogeneic mechanism remains unresolved. In the present study, we examined the glycosylation profile of differently charged IgA1 from IgAN patients. The binding characteristics of these IgA1 fractions to cultured human mesangial cells (HMC) and hepatoma cell lines (HepG2) were studied. Methods: Differently charged IgA1 were isolated by ion exchange chromatography. The glycosylation profile in the carbohydrate moieties of these differently charged IgA1 was analyzed by galactose (Gal)-, galactose-acetylgalactosamine (Gal-GalNAc)-, or sialic acid-specific enzyme-linked lectin binding assays (ELLA). The binding characteristic of these IgA1 to HMC was examined by flow cytometry and competitive binding assay. Results: Anionic pIgA from IgAN patients showed less reactivity in (Gal)- and (Gal-GalNAc)-specific ELLA (p < 0.01). There was higher reactivity for anionic pIgA1 in α(2,6)-linked sialic acid-specific ELLA (p < 0.01). Anionic pIgA1 from IgAN patients exhibited increased binding to cultured HMC and the binding was significantly reduced after neuraminidase treatment (p < 0.05). In contrast, anionic pIgA1 from IgAN patients bound less to cultured HepG2 cells and the binding was enhanced following neuraminidase treatment (p < 0.05). Conclusions: We demonstrated an unusual glycosylation and sialylation pattern of anionic pIgA1 in IgAN which may have an important effect on its pathogenesis.
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.