1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phage display of environmental protein toxins and virulence factors reveals the prevalence, persistence, and genetics of antibody responses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Basic local alignment search tool.

          A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MEME Suite: tools for motif discovery and searching

            The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Immune Epitope Database (IEDB): 2018 update

              Abstract The Immune Epitope Database (IEDB, iedb.org) captures experimental data confined in figures, text and tables of the scientific literature, making it freely available and easily searchable to the public. The scope of the IEDB extends across immune epitope data related to all species studied and includes antibody, T cell, and MHC binding contexts associated with infectious, allergic, autoimmune, and transplant related diseases. Having been publicly accessible for >10 years, the recent focus of the IEDB has been improved query and reporting functionality to meet the needs of our users to access and summarize data that continues to grow in quantity and complexity. Here we present an update on our current efforts and future goals.
                Bookmark

                Author and article information

                Journal
                Immunity
                Immunity
                Elsevier BV
                10747613
                June 2022
                June 2022
                : 55
                : 6
                : 1051-1066.e4
                Article
                10.1016/j.immuni.2022.05.002
                35649416
                72638970-a27e-40bd-982c-dbc52f3dfc94
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article