62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular Epidemiological Investigation of Porcine kobuvirus and Its Coinfection Rate with PEDV and SaV in Northwest China

      research-article
      , , *
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porcine kobuvirus (PKV) has circulated throughout China in recent years. Although many studies have detected it throughout the world, its molecular epidemiology has not been characterized in northwest China. To understand its prevalence, 203 fecal samples were collected from different regions of Gansu Province and tested with reverse transcription-polymerase chain reaction. In this study, we tested these samples for PKV, porcine epidemic diarrhea virus (PEDV), and sapovirus and analyzed the amplified 2C gene fragments of PKV. Overall, 126 (62.1%) samples were positive for PKV. Of the 74 piglets samples among the 203 fecal samples, 65 (87.8%) were positive for PKV. PKV infection was often accompanied by PEDV, but the relationship between the two viruses must be confirmed. A phylogenetic analysis indicated that the PKV strains isolated from the same regions clustered on the same branches. This investigation shows that PKV infections are highly prevalent in pigs in northwest China, especially in piglets with symptoms of diarrhea.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses.

          Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viruses in diarrhoeic dogs include novel kobuviruses and sapoviruses.

            The close interactions of dogs with humans and surrounding wildlife provide frequent opportunities for cross-species virus transmissions. In order to initiate an unbiased characterization of the eukaryotic viruses in the gut of dogs, this study used deep sequencing of partially purified viral capsid-protected nucleic acids from the faeces of 18 diarrhoeic dogs. Known canine parvoviruses, coronaviruses and rotaviruses were identified, and the genomes of the first reported canine kobuvirus and sapovirus were characterized. Canine kobuvirus, the first sequenced canine picornavirus and the closest genetic relative of the diarrhoea-causing human Aichi virus, was detected at high frequency in the faeces of both healthy and diarrhoeic dogs. Canine sapovirus constituted a novel genogroup within the genus Sapovirus, a group of viruses also associated with human and animal diarrhoea. These results highlight the high frequency of new virus detection possible even in extensively studied animal species using metagenomics approaches, and provide viral genomes for further disease-association studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kobuviruses - a comprehensive review.

              Kobuviruses are members of the large and growing family Picornaviridae. Until now, two official, Aichi virus and Bovine kobuvirus, and one candidate kobuvirus species, 'porcine kobuvirus', have been identified in human, cattle and swine, respectively. In addition, kobu-like viruses were detected very recently in the bat. Aichi virus could be one of the causative agents of gastroenteritis in humans, and kobuviruses probably also cause diarrhoea in cattle and swine. Although Aichi virus has been detected relatively infrequently (0-3%) in human diarrhoea, high seroprevalence, up to 80-95% at the age of 30-40, was found indicating the general nature of infection in different human populations. In the previous years, much new information has accumulated relating to kobuviruses and their host species. This review summarises the current knowledge on kobuviruses including taxonomy, biology and viral characteristics, and covers all aspects of infection including epidemiology, clinical picture, host species diversity, laboratory diagnosis and it gives a summary about possible future perspectives. Copyright © 2011 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                16 May 2016
                : 2016
                : 7590569
                Affiliations
                Lanzhou Veterinary Research Institute, China Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
                Author notes

                Academic Editor: Jacques Cabaret

                Author information
                http://orcid.org/0000-0002-9738-5415
                http://orcid.org/0000-0002-7883-0739
                Article
                10.1155/2016/7590569
                4884858
                27294133
                72717400-ab00-4940-ad3c-38238f388660
                Copyright © 2016 Chen Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 January 2016
                : 15 April 2016
                : 28 April 2016
                Categories
                Research Article

                Comments

                Comment on this article