21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Swine influenza viruses in Northern Vietnam in 2013–2014

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Swine are an important intermediate host for emergence of pandemic influenza. Vietnam is the largest swine producer in South East Asia. Systematic virological and serological surveillance of swine influenza viruses was carried out in Northern Vietnam from May 2013 to June 2014 with monthly sampling of pigs in local and large collective slaughterhouses and in a live pig market. Influenza A seroprevalence in the local slaughterhouses and in the large collective slaughterhouse was 48.7% and 29.1%, respectively. Seventy-seven influenza A viruses were isolated, all from the large collective slaughterhouse. Genetic analysis revealed six virus genotypes including H1N1 2009 pandemic (H1N1pdm09) viruses, H1N2 with H1 of human origin, H3N2 and H1N1pdm09 reassortants, and triple-reassortant H3N2 viruses. Phylogenetic analysis of swine and human H1N1pdm09 viruses showed evidence of repeated spill-over from humans to swine rather than the establishment of H1N1pdm09 as long-term distinct lineage in swine. Surveillance at the large collective slaughterhouse proved to be the most efficient, cost-effective, and sustainable method of surveillance for swine influenza viruses in Vietnam.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging infectious diseases in southeast Asia: regional challenges to control

          Summary Southeast Asia is a hotspot for emerging infectious diseases, including those with pandemic potential. Emerging infectious diseases have exacted heavy public health and economic tolls. Severe acute respiratory syndrome rapidly decimated the region's tourist industry. Influenza A H5N1 has had a profound effect on the poultry industry. The reasons why southeast Asia is at risk from emerging infectious diseases are complex. The region is home to dynamic systems in which biological, social, ecological, and technological processes interconnect in ways that enable microbes to exploit new ecological niches. These processes include population growth and movement, urbanisation, changes in food production, agriculture and land use, water and sanitation, and the effect of health systems through generation of drug resistance. Southeast Asia is home to about 600 million people residing in countries as diverse as Singapore, a city state with a gross domestic product (GDP) of US$37 500 per head, and Laos, until recently an overwhelmingly rural economy, with a GDP of US$890 per head. The regional challenges in control of emerging infectious diseases are formidable and range from influencing the factors that drive disease emergence, to making surveillance systems fit for purpose, and ensuring that regional governance mechanisms work effectively to improve control interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term evolution and transmission dynamics of swine influenza A virus.

            Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China.

              Two-way transmission of influenza viruses between humans and swine has been frequently observed, and the occurrence of the 2009 H1N1 pandemic influenza virus (pdm/09) demonstrated that swine-origin viruses could facilitate the genesis of a pandemic strain. Although multiple introductions to and reassortment in swine of the pdm/09 virus have been repeatedly reported in both Eurasia and the Americas, its long-term impact on the development of swine influenza viruses (SIVs) has not been systematically explored. Our comprehensive evolutionary studies of the complete genomes of 387 SIVs obtained from 2009 to 2012 by influenza virus surveillance in China revealed 17 reassortant genotypes with pdm/09-origin genes. Even though the entire 2009 pandemic virus and its surface genes cannot persist, its internal genes have become established and are now the predominant lineages in pigs in the region. The main persistent pdm/09-origin reassortant forms had at least five pdm/09-origin internal genes, and their surface genes were primarily of European avian-like (EA) or human H3N2-like SIV origin. These findings represent a marked change in the evolutionary patterns and ecosystem of SIVs in China. It is possible that the pdm/09-origin internal genes are in the process of replacing EA or triple-reassortant-like internal genes. These alterations in the SIV gene pool need to be continually monitored to assess changes in the potential for SIV transmission to humans. Shortly after the emergence of the 2009 pandemic H1N1 (pdm/09) influenza virus, it was transmitted from humans to pigs and this continues to occur around the world. Many reassortants between pdm/09-origin viruses and enzootic swine influenza viruses (SIVs) have been detected. However, the long-term impact of pdm/09-origin viruses on the SIV gene pool, which could lead to the generation of influenza viruses with the potential to infect humans, has not been systematically examined. From extensive surveillance of SIVs over a 38-month period in southern China, it was found that although neither complete pdm/09 viruses nor their surface genes could persist in pigs, their internal genes did persist. Over the survey period, these internal genes became predominant, potentially replacing those of the enzootic SIV lineages. The altered diversity of the SIV gene pool needs to be closely monitored for changes in the potential for SIV transmission to humans. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
                Bookmark

                Author and article information

                Contributors
                malik@hku.hk
                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Nature Publishing Group UK (London )
                2222-1751
                2 July 2018
                2 July 2018
                2018
                : 7
                : 123
                Affiliations
                [1 ]ISNI 0000000121742757, GRID grid.194645.b, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, , The University of Hong Kong-Hong Kong Special Administrative Region, ; Hong Kong, China
                [2 ]Animal and Integrated Risk Management Research Unit (AGIRs), French Agricultural Research Center for International Development (CIRAD), Montpellier, France
                [3 ]GRID grid.419675.8, National Institute of Veterinary Research, ; Hanoi, Vietnam
                [4 ]ISNI 0000 0000 8955 7323, GRID grid.419597.7, National Institute of Hygiene and Epidemiology, ; Hanoi, Vietnam
                Author information
                http://orcid.org/0000-0002-9219-8979
                http://orcid.org/0000-0001-6421-7223
                http://orcid.org/0000-0002-3775-9139
                http://orcid.org/0000-0002-6297-7154
                Article
                109
                10.1038/s41426-018-0109-y
                6028489
                29967457
                731685a9-d576-40b4-be30-db760a7c22fb
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 February 2018
                : 13 May 2018
                : 16 May 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100002920, Research Grants Council, University Grants Committee (RGC, UGC);
                Award ID: T11-705/14N
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000060, U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID);
                Award ID: HHSN272201400006C
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: U54 GM088558
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Comments

                Comment on this article