19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin.

      1 ,
      Physical chemistry chemical physics : PCCP
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The activation of rhodopsin has been the focus of researchers over the past decades, revealing many aspects of the activation pathways of this prototypical G protein-coupled receptor on a molecular level, starting with the light-dependent isomerization of its retinal chromophore from 11-cis to all-trans and leading eventually to the large scale helix movements in the transition to the active receptor state, Meta II. Comparatively little is known, however, on the deactivation pathways of the light receptor, which represent essential steps in maintaining a functional photoreceptor cell. Rhodopsin's active receptor species, Meta II, decays by two fundamentally different pathways, either forming the apoprotein opsin by release of the activating all-trans retinal ligand from its binding pocket, or by a thermal isomerization of this ligand to a less activating species in the transition to metarhodopsin III (Meta III). Both decay products, opsin and Meta III, are largely inactive under physiological conditions, yet they do not restore the complete inactivity of the dark state. Although some properties of Meta III have been described already in the 1960s, its molecular nature and the pathways of its formation have remained rather obscure. In this review, we focus on recent studies from our laboratories, which have provided a major progress in our understanding of the Meta III deactivation pathway and its potential physiological roles. Using Fourier-transform infrared (FTIR) difference spectroscopy in combination with a variety of other spectroscopic and biochemical techniques and quantum chemical calculations, we have developed a general picture of the interplay between the retinal ligand and the receptor protein, which is compared to similar reaction mechanisms in invertebrate photoreceptors and microbial retinal proteins.

          Related collections

          Author and article information

          Journal
          Phys Chem Chem Phys
          Physical chemistry chemical physics : PCCP
          Royal Society of Chemistry (RSC)
          1463-9076
          1463-9076
          Apr 14 2007
          : 9
          : 14
          Affiliations
          [1 ] Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Schumannstrasse 20-21, 10015, Berlin, Germany. franz.bartl@charite.de
          Article
          10.1039/b616365c
          17396175
          734e462f-2e87-4e37-948d-b3d509cb907e
          History

          Comments

          Comment on this article