28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity.

          Tumours often engage the lymphatic system in order to invade and metastasize. The tumour-draining lymph node may be an immune-privileged site that protects the tumour from host immunity, and lymph flow that drains tumours is often increased, enhancing communication between the tumour and the sentinel node. In addition to increasing the transport of tumour antigens and regulatory cytokines to the lymph node, increased lymph flow in the tumour margin causes mechanical stress-induced changes in stromal cells that stiffen the matrix and alter the immune microenvironment of the tumour. We propose that synergies between lymphatic drainage and flow-induced mechanotransduction in the stroma promote tumour immune escape by appropriating lymphatic mechanisms of peripheral tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biophysical aspects of blood flow in the microvasculature.

            The main function of the microvasculature is transport of materials. Water and solutes are carried by blood through the microvessels and exchanged, through vessel walls, with the surrounding tissues. This transport function is highly dependent on the architecture of the microvasculature and on the biophysical behavior of blood flowing through it. For example, the hydrodynamic resistance of a microvascular network, which determines the overall blood flow for a given perfusion pressure, depends on the number, size and arrangement of microvessels, the passive and active mechanisms governing their diameters, and on the apparent viscosity of blood flowing in them. Suspended elements in blood, especially red blood cells, strongly influence the apparent viscosity, which varies with several factors, including vessel diameter, hematocrit and blood flow velocity. The distribution of blood flows and red cell fluxes within a network, which influences the spatial pattern of mass transport, is determined by the mechanics of red cell motion in individual diverging bifurcations. Here, our current understanding of the biophysical processes governing blood flow in the microvasculature is reviewed, and some directions for future research are indicated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

              Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 March 2017
                2017
                : 7
                : 43961
                Affiliations
                [1 ]Baylor College of Medicine, Department of Surgery , Houston, TX, USA
                [2 ]Department Biophysics Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
                [3 ]Interdepartmental program in Translational Biology and Molecular Medicine, Baylor College of Medicine , Houston, TX, USA
                [4 ]Institute of Chemistry, University of Silesia , Katowice, Poland
                [5 ]Rice University, Department of Chemistry , Houston, TX, USA
                [6 ]Rice University, Department of Mechanical Engineering and Materials Science , Houston, TX, USA
                [7 ]University of Houston, Department of Biomedical Engineering , Houston, TX, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep43961
                10.1038/srep43961
                5347121
                28287120
                735721a4-d0c4-4978-b226-755b95202b13
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 November 2016
                : 01 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article