1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perceptual Behavior Depends Differently on Pupil-Linked Arousal and Heartbeat Dynamics-Linked Arousal in Rats Performing Tactile Discrimination Tasks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several physiology signals, including heart rate and pupil size, have been widely used as peripheral indices of arousal to evaluate the effects of arousal on brain functions. However, whether behavior depends differently on arousal indexed by these physiological signals remains unclear. We simultaneously recorded electrocardiogram (ECG) and pupil size in head-fixed rats performing tactile discrimination tasks. We found both heartbeat dynamics and pupil size co-varied with behavioral outcomes, indicating behavior was dependent upon arousal indexed by the two physiological signals. To estimate the potential difference between the effects of pupil-linked arousal and heart rate-linked arousal on behavior, we constructed a Bayesian decoder to predict animals' behavior from pupil size and heart rate prior to stimulus presentation. The performance of the decoder was significantly better when using both heart rate and pupil size as inputs than when using either of them alone, suggesting the effects of the two arousal systems on behavior are not completely redundant. Supporting this notion, we found that, on a substantial portion of trials correctly predicted by the heart rate-based decoder, the pupil size-based decoder failed to correctly predict animals' behavior. Taken together, these results suggest that pupil-linked and heart rate-linked arousal systems exert different influences on animals' behavior.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLabCut: markerless pose estimation of user-defined body parts with deep learning

          Quantifying behavior is crucial for many applications in neuroscience. Videography provides easy methods for the observation and recording of animal behavior in diverse settings, yet extracting particular aspects of a behavior for further analysis can be highly time consuming. In motor control studies, humans or other animals are often marked with reflective markers to assist with computer-based tracking, but markers are intrusive, and the number and location of the markers must be determined a priori. Here we present an efficient method for markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results with minimal training data. We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. Remarkably, even when only a small number of frames are labeled (~200), the algorithm achieves excellent tracking performance on test frames that is comparable to human accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Overview of Heart Rate Variability Metrics and Norms

            Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Autonomic nervous system activity in emotion: A review

              Autonomic nervous system (ANS) activity is viewed as a major component of the emotion response in many recent theories of emotion. Positions on the degree of specificity of ANS activation in emotion, however, greatly diverge, ranging from undifferentiated arousal, over acknowledgment of strong response idiosyncrasies, to highly specific predictions of autonomic response patterns for certain emotions. A review of 134 publications that report experimental investigations of emotional effects on peripheral physiological responding in healthy individuals suggests considerable ANS response specificity in emotion when considering subtypes of distinct emotions. The importance of sound terminology of investigated affective states as well as of choice of physiological measures in assessing ANS reactivity is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                11 January 2021
                2020
                : 14
                : 614248
                Affiliations
                Department of Biomedical Engineering, Columbia University , New York, NY, United States
                Author notes

                Edited by: James W. Grau, Texas A&M University, United States

                Reviewed by: Sander Nieuwenhuis, Leiden University, Netherlands; Takuya Sasaki, The University of Tokyo, Japan

                *Correspondence: Qi Wang qi.wang@ 123456columbia.edu

                †These authors have contributed equally to this work

                Article
                10.3389/fnsys.2020.614248
                7829454
                33505252
                73c84580-8471-49ca-ac0b-47dd33d5160d
                Copyright © 2021 Liu, Narasimhan, Schriver and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 October 2020
                : 30 November 2020
                Page count
                Figures: 6, Tables: 0, Equations: 7, References: 78, Pages: 15, Words: 10711
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Funded by: National Science Foundation 10.13039/100000001
                Categories
                Neuroscience
                Original Research

                Neurosciences
                heart rate,heart rate variability,pupillometry,bayesian decoder,pupil-linked arousal
                Neurosciences
                heart rate, heart rate variability, pupillometry, bayesian decoder, pupil-linked arousal

                Comments

                Comment on this article