5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references231

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and biological activities of N-acetylcysteine.

          N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.

            Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxidative stress, glutamate, and neurodegenerative disorders

                Bookmark

                Author and article information

                Journal
                Neurotoxicity Research
                Neurotox Res
                Springer Science and Business Media LLC
                1029-8428
                1476-3524
                April 2019
                January 11 2019
                April 2019
                : 35
                : 3
                : 739-774
                Article
                10.1007/s12640-018-9989-9
                30632085
                7435efc3-9e32-40f3-b690-e08890ef7a9b
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article