10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Feelings of loneliness are associated with poor physical and mental health. Detection of loneliness through passive sensing on personal devices can lead to the development of interventions aimed at decreasing rates of loneliness.

          Objective

          The aim of this study was to explore the potential of using passive sensing to infer levels of loneliness and to identify the corresponding behavioral patterns.

          Methods

          Data were collected from smartphones and Fitbits (Flex 2) of 160 college students over a semester. The participants completed the University of California, Los Angeles (UCLA) loneliness questionnaire at the beginning and end of the semester. For a classification purpose, the scores were categorized into high (questionnaire score>40) and low (≤40) levels of loneliness. Daily features were extracted from both devices to capture activity and mobility, communication and phone usage, and sleep behaviors. The features were then averaged to generate semester-level features. We used 3 analytic methods: (1) statistical analysis to provide an overview of loneliness in college students, (2) data mining using the Apriori algorithm to extract behavior patterns associated with loneliness, and (3) machine learning classification to infer the level of loneliness and the change in levels of loneliness using an ensemble of gradient boosting and logistic regression algorithms with feature selection in a leave-one-student-out cross-validation manner.

          Results

          The average loneliness score from the presurveys and postsurveys was above 43 (presurvey SD 9.4 and postsurvey SD 10.4), and the majority of participants fell into the high loneliness category (scores above 40) with 63.8% (102/160) in the presurvey and 58.8% (94/160) in the postsurvey. Scores greater than 1 standard deviation above the mean were observed in 12.5% (20/160) of the participants in both pre- and postsurvey scores. The majority of scores, however, fell between 1 standard deviation below and above the mean (pre=66.9% [107/160] and post=73.1% [117/160]).

          Our machine learning pipeline achieved an accuracy of 80.2% in detecting the binary level of loneliness and an 88.4% accuracy in detecting change in the loneliness level. The mining of associations between classifier-selected behavioral features and loneliness indicated that compared with students with low loneliness, students with high levels of loneliness were spending less time outside of campus during evening hours on weekends and spending less time in places for social events in the evening on weekdays (support=17% and confidence=92%). The analysis also indicated that more activity and less sedentary behavior, especially in the evening, was associated with a decrease in levels of loneliness from the beginning of the semester to the end of it (support=31% and confidence=92%).

          Conclusions

          Passive sensing has the potential for detecting loneliness in college students and identifying the associated behavioral patterns. These findings highlight intervention opportunities through mobile technology to reduce the impact of loneliness on individuals’ health and well-being.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study

          Background Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms. Objective The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity. Methods A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis. At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features were developed and extracted from GPS location and phone usage data. Results A number of features from GPS data were related to depressive symptom severity, including circadian movement (regularity in 24-hour rhythm; r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58, P=.012), and location variance (GPS mobility independent of location; r=-.58, P=.012). Phone usage features, usage duration, and usage frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score <5), we achieved an accuracy of 86.5%. Furthermore, a regression model that used the same feature to estimate the participants’ PHQ-9 scores obtained an average error of 23.5%. Conclusions Features extracted from mobile phone sensor data, including GPS and phone usage, provided behavioral markers that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including continuous monitoring of at-risk populations with little patient burden and interventions that can provide just-in-time outreach.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data

            Background Although designed as a consumer product to help motivate individuals to be physically active, Fitbit activity trackers are becoming increasingly popular as measurement tools in physical activity and health promotion research and are also commonly used to inform health care decisions. Objective The objective of this review was to systematically evaluate and report measurement accuracy for Fitbit activity trackers in controlled and free-living settings. Methods We conducted electronic searches using PubMed, EMBASE, CINAHL, and SPORTDiscus databases with a supplementary Google Scholar search. We considered original research published in English comparing Fitbit versus a reference- or research-standard criterion in healthy adults and those living with any health condition or disability. We assessed risk of bias using a modification of the Consensus-Based Standards for the Selection of Health Status Measurement Instruments. We explored measurement accuracy for steps, energy expenditure, sleep, time in activity, and distance using group percentage differences as the common rubric for error comparisons. We conducted descriptive analyses for frequency of accuracy comparisons within a ±3% error in controlled and ±10% error in free-living settings and assessed for potential bias of over- or underestimation. We secondarily explored how variations in body placement, ambulation speed, or type of activity influenced accuracy. Results We included 67 studies. Consistent evidence indicated that Fitbit devices were likely to meet acceptable accuracy for step count approximately half the time, with a tendency to underestimate steps in controlled testing and overestimate steps in free-living settings. Findings also suggested a greater tendency to provide accurate measures for steps during normal or self-paced walking with torso placement, during jogging with wrist placement, and during slow or very slow walking with ankle placement in adults with no mobility limitations. Consistent evidence indicated that Fitbit devices were unlikely to provide accurate measures for energy expenditure in any testing condition. Evidence from a few studies also suggested that, compared with research-grade accelerometers, Fitbit devices may provide similar measures for time in bed and time sleeping, while likely markedly overestimating time spent in higher-intensity activities and underestimating distance during faster-paced ambulation. However, further accuracy studies are warranted. Our point estimations for mean or median percentage error gave equal weighting to all accuracy comparisons, possibly misrepresenting the true point estimate for measurement bias for some of the testing conditions we examined. Conclusions Other than for measures of steps in adults with no limitations in mobility, discretion should be used when considering the use of Fitbit devices as an outcome measurement tool in research or to inform health care decisions, as there are seemingly a limited number of situations where the device is likely to provide accurate measurement.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              StudentLife

                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Mhealth Uhealth
                JMIR Mhealth Uhealth
                JMU
                JMIR mHealth and uHealth
                JMIR Publications (Toronto, Canada )
                2291-5222
                July 2019
                24 July 2019
                : 7
                : 7
                : e13209
                Affiliations
                [1 ] School of Computer Science Carnegie Mellon University Pittsburgh, PA United States
                [2 ] School of Engineering and Applied Sciences The University of Virginia Charlottesville, VA United States
                [3 ] Department of Psychology Carnegie Mellon University Pittsburgh, PA United States
                [4 ] School of Education University of Pittsburgh Pittsburgh, PA United States
                [5 ] Paul G Allen School of Computer Science and Engineering University of Washington Seattle, WA United States
                [6 ] Information School University of Washington Seattle, WA United States
                Author notes
                Corresponding Author: Afsaneh Doryab adoryab@ 123456gmail.com
                Author information
                http://orcid.org/0000-0003-1575-385X
                http://orcid.org/0000-0003-1434-4384
                http://orcid.org/0000-0002-0961-6210
                http://orcid.org/0000-0002-8678-8585
                http://orcid.org/0000-0001-5962-481X
                http://orcid.org/0000-0003-4965-7938
                http://orcid.org/0000-0003-2248-4600
                http://orcid.org/0000-0002-6659-0651
                http://orcid.org/0000-0001-9235-5324
                http://orcid.org/0000-0002-9604-6120
                http://orcid.org/0000-0002-3004-0770
                Article
                v7i7e13209
                10.2196/13209
                6685126
                31342903
                743e7273-d0bf-4873-92aa-b70418b44b73
                ©Afsaneh Doryab, Daniella K Villalba, Prerna Chikersal, Janine M Dutcher, Michael Tumminia, Xinwen Liu, Sheldon Cohen, Kasey Creswell, Jennifer Mankoff, John D Creswell, Anind K Dey. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 24.07.2019.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/.as well as this copyright and license information must be included.

                History
                : 20 December 2018
                : 29 January 2019
                : 13 May 2019
                : 13 June 2019
                Categories
                Original Paper
                Original Paper

                mobile health,loneliness,machine learning,statistical data analysis,data mining,digital phenotyping

                Comments

                Comment on this article