23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emptying the stores: lysosomal diseases and therapeutic strategies

      Nature Reviews Drug Discovery
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: not found
          • Article: not found

          Visualization of an Oxygen-deficient Bottom Water Circulation in Osaka Bay, Japan

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of HE1 as the second gene of Niemann-Pick C disease.

            Niemann-Pick type C2 disease (NP-C2) is a fatal hereditary disorder of unknown etiology characterized by defective egress of cholesterol from lysosomes. Here we show that the disease is caused by a deficiency in HE1, a ubiquitously expressed lysosomal protein identified previously as a cholesterol-binding protein. HE1 was undetectable in fibroblasts from NP-C2 patients but present in fibroblasts from unaffected controls and NP-C1 patients. Mutations in the HE1 gene, which maps to chromosome 14q24.3, were found in NP-C2 patients but not in controls. Treatment of NP-C2 fibroblasts with exogenous recombinant HE1 protein ameliorated lysosomal accumulation of low density lipoprotein-derived cholesterol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease.

              Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Nature
                1474-1776
                1474-1784
                November 17 2017
                November 17 2017
                :
                :
                Article
                10.1038/nrd.2017.214
                29147032
                747d339d-0295-47d4-add2-ffc6a882711c
                © 2017
                History

                Comments

                Comment on this article