12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Sea Buckthorn ( Hippophae rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipids and proteins of skin cells are the most exposed to harmful ultraviolet (UV) radiation contained in sunlight. There is a growing need for natural compounds that will protect these sensitive molecules from damage, without harmful side effects. The aim of this study was to investigate the effect of sea buckthorn seed oil on the redox balance and lipid metabolism in UV irradiated cells formed different skin layers to examine whether it had a protective effect. Human keratinocytes and fibroblasts were subjected to UVA (ultraviolet type A; 30 J/cm 2 and 20 J/cm 2) or UVB (ultraviolet type B; 60 mJ/cm 2 and 200 mJ/cm 2, respectively) radiation and treated with sea buckthorn seed oil (500 ng/mL), and the redox activity was estimated by reactive oxygen species (ROS) generation and enzymatic/non-enzymatic antioxidants activity/level (using electron spin resonance (ESR), high-performance liquid chromatography (HPLC), and spectrophotometry). Lipid metabolism was measured by the level of fatty acids, lipid peroxidation products, endocannabinoids and phospholipase A2 activity (GC/MS (gas chromatography/mass spectrometry), LC/MS (liquid chromatography/mass spectrometry), and spectrophotometry). Also, transcription factor Nrf2 (nuclear erythroid 2-related factor) and its activators/inhibitors, peroxisome proliferator-activated receptors (PPAR) and cannabinoid receptor levels were measured (Western blot). Sea buckthorn oil partially prevents UV-induced ROS generation and enhances the level of non-enzymatic antioxidants such as glutathione (GSH), thioredoxin (Trx) and vitamins E and A. Moreover, it stimulates the activity of Nrf2 leading to enhanced antioxidant enzyme activity. As a result, decreases in lipid peroxidation products (4-hydroxynonenal, 8-isoprostaglandin) and increases in the endocannabinoid receptor levels were observed. Moreover, sea buckthorn oil treatment enhanced the level of phospholipid and free fatty acids, while simultaneously decreasing the cannabinoid receptor expression in UV irradiated keratinocytes and fibroblasts. The main differences in sea buckthorn oil on various skin cell types was observed in the case of PPARs—in keratinocytes following UV radiation PPAR expression was decreased by sea buckthorn oil treatment, while in fibroblasts the reverse effect was observed, indicating an anti-inflammatory effect. With these results, sea buckthorn seed oil exhibited prevention of UV-induced disturbances in redox balance as well as lipid metabolism in skin fibroblasts and keratinocytes, which indicates it is a promising natural compound in skin photo-protection.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.

          The signaling pathways involved in the long-term metabolic effects of angiotensin II (Ang II) in vascular smooth muscle cells are incompletely understood but include the generation of molecules likely to affect oxidase activity. We examined the ability of Ang II to stimulate superoxide anion formation and investigated the identity of the oxidases responsible for its production. Treatment of vascular smooth muscle cells with Ang II for 4 to 6 hours caused a 2.7 +/- 0.4-fold increase in intracellular superoxide anion formation as detected by lucigenin assay. This superoxide appeared to result from activation of both the NADPH and NADH oxidases. NADPH oxidase activity increased from 3.23 +/- 0.61 to 11.80 +/- 1.72 nmol O2-/min per milligram protein after 4 hours of Ang II, whereas NADH oxidase activity increased from 16.76 +/- 2.13 to 45.00 +/- 4.57 nmol O2-/min per milligram protein. The NADPH oxidase activity was stimulated by exogenous phosphatidic and arachidonic acids and was partially inhibited by the specific inhibitor diphenylene iodinium. NADH oxidase activity was increased by arachidonic and linoleic acids, was insensitive to exogenous phosphatidic acid, and was inhibited by high concentrations of quinacrine. Both of these oxidases appear to reside in the plasma membrane, on the basis of migration of the activity after cellular fractionation and their apparent insensitivity to the mitochondrial poison KCN. These observations suggest that Ang II specifically activates enzyme systems that promote superoxide generation and raise the possibility that these pathways function as second messengers for long-term responses, such as hypertrophy or hyperplasia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of antioxidants in the skin: anti-aging effects.

            Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) advance skin aging, which is characterized by wrinkles and atypical pigmentation. Because UV enhances ROS generation in cells, skin aging is usually discussed in relation to UV exposure. The use of antioxidants is an effective approach to prevent symptoms related to photo-induced aging of the skin. In this review, the mechanisms of ROS generation and ROS elimination in the body are summarized. The effects of ROS generated in the skin and the roles of ROS in altering the skin are also discussed. In addition, the effects of representative antioxidants on the skin are summarized with a focus on skin aging. 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications

                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                23 August 2018
                September 2018
                : 7
                : 9
                : 110
                Affiliations
                Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok 15-089, Poland; agnieszka.gegotek@ 123456umb.edu.pl (A.G.); anna.jastrzab@ 123456umb.edu.pl (A.J.); iwona.jarocka-karpowicz@ 123456umb.edu.pl (I.J.-K.); marta.muszynska@ 123456umb.edu.pl (M.M.)
                Author notes
                [* ]Correspondence: elzbieta.skrzydlewska@ 123456umb.edu.pl ; Tel./Fax: +48-857-485-882
                Author information
                https://orcid.org/0000-0001-5397-7139
                Article
                antioxidants-07-00110
                10.3390/antiox7090110
                6162715
                30142919
                7486bf99-15a5-4a2e-b742-711f750d1afa
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 July 2018
                : 20 August 2018
                Categories
                Article

                fibroblasts,keratinocytes,sea buckthorn seeds oil,uv radiation,lipid metabolism

                Comments

                Comment on this article