4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exploiting Local Temporal Characteristics via Multinomial Decomposition Algorithm for Real-Time Activity Recognition

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Wearable Sensors for Human Activity Monitoring: A Review

            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Activity Recognition from User-Annotated Acceleration Data

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of IMU and MARG orientation using a gradient descent algorithm.

              This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time. © 2011 IEEE
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IEEE Transactions on Instrumentation and Measurement
                IEEE Trans. Instrum. Meas.
                Institute of Electrical and Electronics Engineers (IEEE)
                0018-9456
                1557-9662
                2021
                2021
                : 70
                : 1-11
                Article
                10.1109/TIM.2021.3108235
                751bda40-465e-47e7-a7dc-91de1bee1766
                © 2021

                https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                History

                Comments

                Comment on this article