Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids.

      1 ,
      Molecular microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CodY, a GTP-activated global transcriptional regulator of early stationary phase genes, is conserved in many Gram-positive bacterial species. Recently, a number of novel targets regulated by CodY have been identified, including three Bacillus subtilis operons involved in branched-chain amino acid (BCAA) biosynthesis (Molle, V., et al., 2003, J Bacteriol 185: 1911-1922). The mechanism of involvement of CodY in regulating the ilvB operon was investigated here using in vivo transcriptional fusions, in vitro gel mobility shift assays and DNase I footprinting assays. CodY was found to mediate regulation of the ilvB operon by GTP and BCAAs and to bind to the ilvB promoter region. BCAAs increased the affinity of CodY for the ilvB promoter and for all other CodY targets tested. This effect of BCAAs in vitro was additive with the effect of GTP on CodY DNA-binding activity.

          Related collections

          Author and article information

          Journal
          Mol Microbiol
          Molecular microbiology
          Wiley
          0950-382X
          0950-382X
          Jul 2004
          : 53
          : 2
          Affiliations
          [1 ] Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
          Article
          MMI4135
          10.1111/j.1365-2958.2004.04135.x
          15228537
          751f9900-2205-463b-a5cd-a38023a00e2a
          History

          Comments

          Comment on this article