10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hormones are an important component in the regulatory networks guiding plant development. Cytokinins are involved in different physiological and developmental processes in plants. In the model plant Arabidopsis thaliana, cytokinin application during gynoecium development produces conspicuous phenotypes. On the other hand, Brassica napus, also known as canola, is a crop plant belonging to the Brassicaceae family, as A. thaliana. This makes B. napus a good candidate to study whether the cytokinin responses observed in A. thaliana are conserved in the same plant family. Here, we observed that cytokinin treatment in B. napus affects different traits of flower and fruit development. It increases ovule and seed number, affects stamen filament elongation and anther maturation, and causes a conspicuous overgrowth of tissue in petals and gynoecia. Furthermore, cytokinin recovers replum development in both wild type B. napus and in the A. thaliana rpl ntt double mutant, in which no replum is visible. These results indicate both conserved and novel responses to cytokinin in B. napus. Moreover, in this species, some cytokinin-induced phenotypes are inherited to the next, untreated generation, suggesting that cytokinins may trigger epigenetic modifications.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokinin oxidase regulates rice grain production.

          Most agriculturally important traits are regulated by genes known as quantitative trait loci (QTLs) derived from natural allelic variations. We here show that a QTL that increases grain productivity in rice, Gn1a, is a gene for cytokinin oxidase/dehydrogenase (OsCKX2), an enzyme that degrades the phytohormone cytokinin. Reduced expression of OsCKX2 causes cytokinin accumulation in inflorescence meristems and increases the number of reproductive organs, resulting in enhanced grain yield. QTL pyramiding to combine loci for grain number and plant height in the same genetic background generated lines exhibiting both beneficial traits. These results provide a strategy for tailormade crop improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokinin signaling networks.

            Despite long-standing observations on diverse cytokinin actions, the discovery path to cytokinin signaling mechanisms was tortuous. Unyielding to conventional genetic screens, experimental innovations were paramount in unraveling the core cytokinin signaling circuitry, which employs a large repertoire of genes with overlapping and specific functions. The canonical two-component transcription circuitry involves His kinases that perceive cytokinin and initiate signaling, as well as His-to-Asp phosphorelay proteins that transfer phosphoryl groups to response regulators, transcriptional activators, or repressors. Recent advances have revealed the complex physiological functions of cytokinins, including interactions with auxin and other signal transduction pathways. This review begins by outlining the historical path to cytokinin discovery and then elucidates the diverse cytokinin functions and key signaling components. Highlights focus on the integration of cytokinin signaling components into regulatory networks in specific contexts, ranging from molecular, cellular, and developmental regulations in the embryo, root apical meristem, shoot apical meristem, stem and root vasculature, and nodule organogenesis to organismal responses underlying immunity, stress tolerance, and senescence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              S-Adenosylmethionine and methylation.

              S-Adenosylmethionine (AdoMet or SAM) plays a pivotal role as a methyl donor in a myriad of biological and biochemical events. Although it has been claimed that AdoMet itself has therapeutic benefits, it remains to be established whether it can be taken up intact by cells. S-Adenosylhomocysteine (AdoHcy), formed after donation of the methyl group of AdoMet to a methyl acceptor, is then hydrolyzed to adenosine and homocysteine by AdoHcy hydrolase. This enzyme has long been a target for inhibition as its blockade can affect methylation of phospholipids, proteins, DNA, RNA, and other small molecules. Protein carboxymethylation may be involved in repair functions of aging proteins, and heat shock proteins are methylated in response to stress. Bacterial chemotaxis involves carboxymethylation and demethylation in receptor-transducer proteins, although a similar role in mammalian cells is unclear. The precise role of phospholipid methylation remains open. DNA methylation is related to mammalian gene activities, somatic inheritance, and cellular differentiation. Activation of some genes has been ascribed to the demethylation of critical mCpG loci, and silencing of some genes may be related to the methylation of specific CpG loci. Viral DNA genomes exist in cells as extrachromosomal units and are generally not methylated, although once integrated into host chromosomes, different patterns of methylation are correlated with altered paradigms of transcriptional activity. Some viral latency may be related to DNA methylation. Cellular factors have been found to interact with methylated DNA sequences. Methylation of mammalian ribosomal RNAs occurs soon after the synthesis of its 47S precursor RNA in the nucleolus before cleavage to smaller fragments. Inhibition of the methylation of rRNA affects its processing to mature 18S and 28S rRNAs. The methylation of 5'-terminal cap plays an important role in mRNA export from the nucleus, efficient translation, and protection of the integrity of mRNAs. Another important function of AdoMet is that it serves as the sole donor of an aminopropyl group that is conjugated with putrescine to form, first, the polyamine spermidine, and then spermine.
                Bookmark

                Author and article information

                Contributors
                stefan.defolter@cinvestav.mx
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 May 2018
                1 May 2018
                2018
                : 8
                : 6836
                Affiliations
                [1 ]Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, 36824 Guanajuato, Mexico
                [2 ]Departamento de Biotecnología y Bioquímica, CINVESTAV-IPN, Irapuato, 36824 Guanajuato, Mexico
                Author information
                http://orcid.org/0000-0003-4363-7274
                Article
                25017
                10.1038/s41598-018-25017-3
                5931591
                29717220
                753a8478-d927-4764-aa4f-9bfd1aa697d7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 January 2018
                : 13 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article