29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5α-androstan-3β-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

          Author Summary

          Promiscuous proteins generally bind a large array of diverse ligand structures. This may be facilitated by a very large binding site, multiple binding sites, or a flexible binding site that can adjust to the size of the ligand. These aspects also increase the complexity of predicting whether a molecule will bind or not to such proteins which frequently function as exogenous compound sensors to respond to toxic stress. For example, transporters may prevent absorption of some molecules, and enzymes may convert them to more readily excretable compounds (or alternatively activate them prior to further clearance by other detoxification enzymes). Nuclear hormone receptors may respond to ligands and then affect downstream gene expression to upregulate both enzymes and transporters to increase the clearance for the same or different molecules. We have assessed the ability of many different ligand-based and structure-based computational approaches to model and predict the activation of human PXR by steroidal compounds. We find the most effective computational approach to identify potential steroidal PXR agonists which are clinically relevant due to their widespread use in clinical medicine and the presence of mimics in the environment.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway.

          Steroid hormones exert profound effects on differentiation, development, and homeostasis in higher eukaryotes through interactions with nuclear receptors. We describe a novel orphan nuclear receptor, termed the pregnane X receptor (PXR), that is activated by naturally occurring steroids such as pregnenolone and progesterone, and synthetic glucocorticoids and antiglucocorticoids. PXR exists as two isoforms, PXR.1 and PXR.2, that are differentially activated by steroids. Notably, PXR.1 is efficaciously activated by pregnenolone 16alpha-carbonitrile, a glucocorticoid receptor antagonist that induces the expression of the CYP3A family of steroid hydroxylases and modulates sterol and bile acid biosynthesis in vivo. Our results provide evidence for the existence of a novel steroid hormone signaling pathway with potential implications in the regulation of steroid hormone and sterol homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SXR, a novel steroid and xenobiotic-sensing nuclear receptor.

            An important requirement for physiologic homeostasis is the detoxification and removal of endogenous hormones and xenobiotic compounds with biological activity. Much of the detoxification is performed by cytochrome P-450 enzymes, many of which have broad substrate specificity and are inducible by hundreds of different compounds, including steroids. The ingestion of dietary steroids and lipids induces the same enzymes; therefore, they would appear to be integrated into a coordinated metabolic pathway. Instead of possessing hundreds of receptors, one for each inducing compound, we propose the existence of a few broad specificity, low-affinity sensing receptors that would monitor aggregate levels of inducers to trigger production of metabolizing enzymes. In support of this model, we have isolated a novel nuclear receptor, termed the steroid and xenobiotic receptor (SXR), which activates transcription in response to a diversity of natural and synthetic compounds. SXR forms a heterodimer with RXR that can bind to and induce transcription from response elements present in steroid-inducible cytochrome P-450 genes and is expressed in tissues in which these catabolic enzymes are expressed. These results strongly support the steroid sensor hypothesis and suggest that broad specificity sensing receptors may represent a novel branch of the nuclear receptor superfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.

              The estimation of the accuracy of predictions is a critical problem in QSAR modeling. The "distance to model" can be defined as a metric that defines the similarity between the training set molecules and the test set compound for the given property in the context of a specific model. It could be expressed in many different ways, e.g., using Tanimoto coefficient, leverage, correlation in space of models, etc. In this paper we have used mixtures of Gaussian distributions as well as statistical tests to evaluate six types of distances to models with respect to their ability to discriminate compounds with small and large prediction errors. The analysis was performed for twelve QSAR models of aqueous toxicity against T. pyriformis obtained with different machine-learning methods and various types of descriptors. The distances to model based on standard deviation of predicted toxicity calculated from the ensemble of models afforded the best results. This distance also successfully discriminated molecules with low and large prediction errors for a mechanism-based model developed using log P and the Maximum Acceptor Superdelocalizability descriptors. Thus, the distance to model metric could also be used to augment mechanistic QSAR models by estimating their prediction errors. Moreover, the accuracy of prediction is mainly determined by the training set data distribution in the chemistry and activity spaces but not by QSAR approaches used to develop the models. We have shown that incorrect validation of a model may result in the wrong estimation of its performance and suggested how this problem could be circumvented. The toxicity of 3182 and 48774 molecules from the EPA High Production Volume (HPV) Challenge Program and EINECS (European chemical Substances Information System), respectively, was predicted, and the accuracy of prediction was estimated. The developed models are available online at http://www.qspr.org site.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2009
                December 2009
                11 December 2009
                : 5
                : 12
                : e1000594
                Affiliations
                [1 ]Collaborations in Chemistry, Jenkintown, Pennsylvania, United States of America
                [2 ]Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, United States of America
                [3 ]Department of Pharmacology, University of Medicine & Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
                [4 ]Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
                [5 ]Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [6 ]Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafaytte, Indiana, United States of America
                [7 ]Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                [8 ]Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                [9 ]The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                University of Houston, United States of America
                Author notes
                [¤]

                Current address: Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America

                Conceived and designed the experiments: SE SK MAL MDK. Performed the experiments: SE SK MI EJR MAL MDK. Analyzed the data: SE SK MAL MDK. Contributed reagents/materials/analysis tools: SE SK EJR MAL MRR MDK. Wrote the paper: SE SK MAL MRR MDK.

                Article
                09-PLCB-RA-0763R2
                10.1371/journal.pcbi.1000594
                2781111
                20011107
                755d7fe9-d823-4b07-8f65-f5b4cc8db42d
                Ekins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 June 2009
                : 3 November 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Chemical Biology/Directed Molecular Evolution
                Chemical Biology/Small Molecule Chemistry
                Computational Biology/Metabolic Networks
                Computational Biology/Signaling Networks
                Computational Biology/Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article