24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      State of the art in advanced endoscopic imaging for the detection and evaluation of dysplasia and early cancer of the gastrointestinal tract

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ideally, endoscopists should be able to detect, characterize, and confirm the nature of a lesion at the bedside, minimizing uncertainties and targeting biopsies and resections only where necessary. However, under conventional white-light inspection – at present, the sole established technique available to most of humanity – premalignant conditions and early cancers can frequently escape detection. In recent years, a range of innovative techniques have entered the endoscopic arena due to their ability to enhance the contrast of diseased tissue regions beyond what is inherently possible with standard white-light endoscopy equipment. The aim of this review is to provide an overview of the state-of-the-art advanced endoscopic imaging techniques available for clinical use that are impacting the way precancerous and neoplastic lesions of the gastrointestinal tract are currently detected and characterized at endoscopy. The basic instrumentation and the physics behind each method, followed by the most influential clinical experience, are described. High-definition endoscopy, with or without optical magnification, has contributed to higher detection rates compared with white-light endoscopy alone and has now replaced ordinary equipment in daily practice. Contrast-enhancement techniques, whether dye-based or computed, have been combined with white-light endoscopy to further improve its accuracy, but histology is still required to clarify the diagnosis. Optical microscopy techniques such as confocal laser endomicroscopy and endocytoscopy enable in vivo histology during endoscopy; however, although of invaluable assistance for tissue characterization, they have not yet made transition between research and clinical use. It is still unknown which approach or combination of techniques offers the best potential. The optimal method will entail the ability to survey wide areas of tissue in concert with the ability to obtain the degree of detailed information provided by microscopic techniques. In this respect, the challenging combination of autofluorescence imaging and confocal endomicroscopy seems promising, and further research is awaited.

          Video abstract

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo endoscopic optical biopsy with optical coherence tomography.

          Current medical imaging technologies allow visualization of tissue anatomy in the human body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies are generally not sensitive enough to detect early-stage tissue abnormalities associated with diseases such as cancer and atherosclerosis, which require micrometer-scale resolution. Here, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. This method, referred to as "optical biopsy," was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo.

            A confocal laser endoscopy system has recently been developed that may allow subsurface imaging of living cells in colonic tissue in vivo. The aim of the present study was to assess its potential for prediction of histology during screening colonoscopy for colorectal cancer. Twenty-seven patients underwent colonoscopy with the confocal endoscope using acriflavine hydrochloride or fluorescein sodium with blue laser illumination. Furthermore, 42 patients underwent colonoscopy with this system using fluorescein sodium. Standardized locations and circumscript lesions were examined by confocal imaging before taking biopsy specimens. Confocal images were graded according to cellular and vascular changes and correlated with conventional histology in a prospective and blinded fashion. Acriflavine hydrochloride and fluorescein sodium both yielded high-quality images. Whereas acriflavine hydrochloride strongly labeled the superficial epithelial cells, fluorescein sodium offered deeper imaging into the lamina propria. Fluorescein sodium was thus used for the prospective component of the study in which 13,020 confocal images from 390 different locations were compared with histologic data from 1038 biopsy specimens. Subsurface analysis during confocal laser endoscopy allowed detailed analysis of cellular structures. The presence of neoplastic changes could be predicted with high accuracy (sensitivity, 97.4%; specificity, 99.4%; accuracy, 99.2%). Confocal laser endoscopy is a novel diagnostic tool to analyze living cells during colonoscopy, thereby enabling virtual histology of neoplastic changes with high accuracy. These newly discovered diagnostic possibilities may be of crucial importance in clinical practice and lead to an optimized rapid diagnosis of neoplastic changes during ongoing colonoscopy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging the glycome.

              Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecule's environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease.
                Bookmark

                Author and article information

                Journal
                Clin Exp Gastroenterol
                Clin Exp Gastroenterol
                Clinical and Experimental Gastroenterology
                Clinical and Experimental Gastroenterology
                Dove Medical Press
                1178-7023
                2014
                13 May 2014
                : 7
                : 133-150
                Affiliations
                [1 ]Section of Gastroenterology and Hepatology, Department of Medicine and Photonics Group, Department of Physics, Imperial College London, London, UK
                [2 ]Endoscopy Unit, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
                Author notes
                Correspondence: Sergio Coda, Room 629, Level 6, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK, Tel +44 207 594 7738, Fax +44 207 594 7714, Email s.coda@ 123456imperial.ac.uk
                Article
                ceg-7-133
                10.2147/CEG.S58157
                4028486
                24868168
                75e2ff10-a6d8-4c77-a1ca-95a64baccf3b
                © 2014 Coda and Thillainayagam. This work is published by Dove Medical Press Limited, and licensed under a Creative Commons Attribution License

                The full terms of the License are available at http://creativecommons.org/licenses/by/4.0/. The license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Categories
                Review

                Gastroenterology & Hepatology
                image-enhanced endoscopy,narrowband imaging,autofluorescence imaging,confocal laser endomicroscopy,fluorescence lifetime imaging

                Comments

                Comment on this article