10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Successive Convexification: A Superlinearly Convergent Algorithm for Non-convex Optimal Control Problems

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper presents the SCvx algorithm, a successive convexification algorithm designed to solve non-convex optimal control problems with global convergence and superlinear convergence-rate guarantees. The proposed algorithm handles nonlinear dynamics and non-convex state and control constraints by linearizing them about the solution of the previous iterate, and solving the resulting convex subproblem to obtain a solution for the current iterate. Additionally, the algorithm incorporates several safe-guarding techniques into each convex subproblem, employing virtual controls and virtual buffer zones to avoid artificial infeasibility, and a trust region to avoid artificial unboundedness. The procedure is repeated in succession, thus turning a difficult non-convex optimal control problem into a sequence of numerically tractable convex subproblems. Using fast and reliable Interior Point Method (IPM) solvers, the convex subproblems can be computed quickly, making the SCvx algorithm well suited for real-time applications. Analysis is presented to show that the algorithm converges both globally and superlinearly, guaranteeing the local optimality of the original problem. The superlinear convergence is obtained by exploiting the structure of optimal control problems, showcasing the superior convergence rate that can be obtained by leveraging specific problem properties when compared to generic nonlinear programming methods. Numerical simulations are performed for an illustrative non-convex quad-rotor motion planning example problem, and corresponding results obtained using Sequential Quadratic Programming (SQP) solver are provided for comparison. Our results show that the convergence rate of the SCvx algorithm is indeed superlinear, and surpasses that of the SQP-based method by converging in less than half the number of iterations.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          SDPT3 — A Matlab software package for semidefinite programming, Version 1.3

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Distributed Optimal Power Flow for Smart Microgrids

            , , (2014)
            Optimal power flow (OPF) is considered for microgrids, with the objective of minimizing either the power distribution losses, or, the cost of power drawn from the substation and supplied by distributed generation (DG) units, while effecting voltage regulation. The microgrid is unbalanced, due to unequal loads in each phase and non-equilateral conductor spacings on the distribution lines. Similar to OPF formulations for balanced systems, the considered OPF problem is nonconvex. Nevertheless, a semidefinite programming (SDP) relaxation technique is advocated to obtain a convex problem solvable in polynomial-time complexity. Enticingly, numerical tests demonstrate the ability of the proposed method to attain the globally optimal solution of the original nonconvex OPF. To ensure scalability with respect to the number of nodes, robustness to isolated communication outages, and data privacy and integrity, the proposed SDP is solved in a distributed fashion by resorting to the alternating direction method of multipliers. The resulting algorithm entails iterative message-passing among groups of consumers and guarantees faster convergence compared to competing alternatives
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A New Approach to Lagrange Multipliers

                Bookmark

                Author and article information

                Journal
                17 April 2018
                Article
                1804.06539
                7629b623-5b93-4bbe-9bac-c537946abc86

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                17 pages, 5 figures, preprint submitted to Automatica
                math.OC

                Numerical methods
                Numerical methods

                Comments

                Comment on this article