1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two new reared species of Heteropteron Brullé (Hymenoptera, Braconidae, Cardiochilinae) from northwest Costa Rica, with the first definitive host records for the genus

      , , ,

      Journal of Hymenoptera Research

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two new Costa Rican species of the braconid parasitoid wasp subfamily Cardiochilinae, Heteropteron kidonoi Dabek & Whitfield and Heteropteron hasegawai Dabek & Whitfield, are described and illustrated from dry forest in the Area de Conservacion Guanacastae, along with data on rearing from their hosts. Heteropteron kidonoi is a solitary endoparasitoid of Stenoma cathosiota (Lepidoptera: Depressariidae) on Roupala montana (Proteaceae), while H. hasegawai is a solitary endoparasitoid of Carthara abrupta (Lepidoptera: Pyralidae) on the same host plant, but typically at slightly higher elevation localities. Diagnostic characters are provided to distinguish these two new species from each other, and also from the three previously decsribed species of Heteropteron. Heteropteron kidonoi and H. hasegawai are the first species of Heteropteron to have any host data, and also are the first to be reported in Costa Rica.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections.

          We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgastrine braconid genera reared from parapatric tropical dry forest, cloud forest, and rain forest in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica and combined these data with records of caterpillar hosts and morphological analyses. We asked whether barcoding and morphology discover the same provisional species and whether the biological entities revealed by our analysis are congruent with wasp host specificity. Morphological analysis revealed 171 provisional species, but barcoding exposed an additional 142 provisional species; 95% of the total is likely to be undescribed. These 313 provisional species are extraordinarily host specific; more than 90% attack only 1 or 2 species of caterpillars out of more than 3,500 species sampled. The most extreme case of overlooked diversity is the morphospecies Apanteles leucostigmus. This minute black wasp with a distinctive white wing stigma was thought to parasitize 32 species of ACG hesperiid caterpillars, but barcoding revealed 36 provisional species, each attacking one or a very few closely related species of caterpillars. When host records and/or within-ACG distributions suggested that DNA barcoding had missed a species-pair, or when provisional species were separated only by slight differences in their barcodes, we examined nuclear sequences to test hypotheses of presumptive species boundaries and to further probe host specificity. Our iterative process of combining morphological analysis, ecology, and DNA barcoding and reiteratively using specimens maintained in permanent collections has resulted in a much more fine-scaled understanding of parasitoid diversity and host specificity than any one of these elements could have produced on its own.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity.

            Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0-2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding - the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species - was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to 'variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution. © 2009 Blackwell Publishing Ltd and Crown in the right of Canada.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review of Apanteles sensu stricto (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservación Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica

              Abstract More than half a million specimens of wild-caught Lepidoptera caterpillars have been reared for their parasitoids, identified, and DNA barcoded over a period of 34 years (and ongoing) from Area de Conservación de Guanacaste (ACG), northwestern Costa Rica. This provides the world’s best location-based dataset for studying the taxonomy and host relationships of caterpillar parasitoids. Among Hymenoptera, Microgastrinae (Braconidae) is the most diverse and commonly encountered parasitoid subfamily, with many hundreds of species delineated to date, almost all undescribed. Here, we reassess the limits of the genus Apanteles sensu stricto, describe 186 new species from 3,200+ parasitized caterpillars of hundreds of ACG Lepidoptera species, and provide keys to all 205 described Apanteles from Mesoamerica – including 19 previously described species in addition to the new species. The Mesoamerican Apanteles are assigned to 32 species-groups, all but two of which are newly defined. Taxonomic keys are presented in two formats: traditional dichotomous print versions and links to electronic interactive versions (software Lucid 3.5). Numerous illustrations, computer-generated descriptions, distributional information, wasp biology, and DNA barcodes (where available) are presented for every species. All morphological terms are detailed and linked to the Hymenoptera Anatomy Ontology website. DNA barcodes (a standard fragment of the cytochrome c oxidase I (COI) mitochondrial gene), information on wasp biology (host records, solitary/gregariousness of wasp larvae), ratios of morphological features, and wasp microecological distributions were used to help clarify boundaries between morphologically cryptic species within species-complexes. Because of the high accuracy of host identification for about 80% of the wasp species studied, it was possible to analyze host relationships at a regional level. The ACG species of Apanteles attack mainly species of Hesperiidae, Elachistidae and Crambidae (Lepidoptera). About 90% of the wasp species with known host records seem to be monophagous or oligophagous at some level, parasitizing just one host family and commonly, just one species of caterpillar. Only 15 species (9%) parasitize species in more than one family, and some of these cases are likely to be found to be species complexes. We have used several information sources and techniques (traditional taxonomy, molecular, software-based, biology, and geography) to accelerate the process of finding and describing these new species in a hyperdiverse group such as Apanteles. The following new taxonomic and nomenclatural acts are proposed. Four species previously considered to be Apanteles are transferred to other microgastrine genera: Dolichogenidea hedyleptae (Muesebeck, 1958), comb. n., Dolichogenidea politiventris (Muesebeck, 1958), comb. n., Rhygoplitis sanctivincenti (Ashmead, 1900), comb. n., and Illidops scutellaris (Muesebeck, 1921), comb. rev. One European species that is a secondary homonym to a Mesoamerican species is removed from Apanteles and transferred to another genus: Iconella albinervis (Tobias, 1964), stat. rev. The name Apanteles albinervican Shenefelt, 1972, is an invalid replacement name for Apanteles albinervis (Cameron, 1904), stat. rev., and thus the later name is reinstated as valid. The following 186 species, all in Apanteles and all authored by Fernández-Triana, are described as species nova: adelinamoralesae, adrianachavarriae, adrianaguilarae, adrianguadamuzi, aichagirardae, aidalopezae, albanjimenezi, alejandromasisi, alejandromorai, minorcarmonai, alvarougaldei, federicomatarritai, anabellecordobae, rostermoragai, anamarencoae, anamartinesae, anapiedrae, anariasae, andreacalvoae, angelsolisi, arielopezi, bernardoespinozai, bernyapui, bettymarchenae, bienvenidachavarriae, calixtomoragai, carloscastilloi, carlosguadamuzi, eliethcantillanoae, carlosrodriguezi, carlosviquezi, carloszunigai, carolinacanoae, christianzunigai, cinthiabarrantesae, ciriloumanai, cristianalemani, cynthiacorderoae, deifiliadavilae, dickyui, didiguadamuzi, diegoalpizari, diegotorresi, diniamartinezae, duniagarciae, duvalierbricenoi, edgarjimenezi, edithlopezae, eduardoramirezi, edwinapui, eldarayae, erickduartei, esthercentenoae, eugeniaphilipsae, eulogiosequeira, felipechavarriai, felixcarmonai, fernandochavarriai, flormoralesae, franciscopizarroi, franciscoramirezi, freddyquesadai, freddysalazari, gabrielagutierrezae, garygibsoni, gerardobandoi, gerardosandovali, gladysrojasae, glenriverai, gloriasihezarae, guadaluperodriguezae, guillermopereirai, juanmatai, harryramirezi, hectorsolisi, humbertolopezi, inesolisae, irenecarrilloae, isaacbermudezi, isidrochaconi, isidrovillegasi, ivonnetranae, jairomoyai, javiercontrerasi, javierobandoi, javiersihezari, jesusbrenesi, jesusugaldei, jimmychevezi, johanvargasi, jorgecortesi, jorgehernandezi, josecalvoi, josecortesi, josediazi, josejaramilloi, josemonteroi, joseperezi, joserasi, juanapui, juancarrilloi, juangazoi, juanhernandezi, juanlopezi, juanvictori, juliodiazi, juniorlopezi, keineraragoni, laurahuberae, laurenmoralesae, leninguadamuzi, leonelgarayi, lilliammenae, lisabearssae, luciariosae, luisbrizuelai, luiscanalesi, luiscantillanoi, luisgarciai, luisgaritai, luishernandezi, luislopezi, luisvargasi, manuelarayai, manuelpereirai, manuelriosi, manuelzumbadoi, marcobustosi, marcogonzalezi, marcovenicioi, mariachavarriae mariaguevarae, marialuisariasae, mariamendezae, marianopereirai, mariatorrentesae, sigifredomarini, marisolarroyoae, marisolnavarroae, marvinmendozai, mauriciogurdiani, milenagutierrezae, monicachavarriae, oscarchavesi, osvaldoespinozai, pablotranai, pabloumanai, pablovasquezi, paulaixcamparijae, luzmariaromeroae, petronariosae, randallgarciai, randallmartinezi, raulacevedoi, raulsolorsanoi, wadyobandoi, ricardocaleroi, robertmontanoi, robertoespinozai, robertovargasi, rodrigogamezi, rogerblancoi, rolandoramosi, rolandovegai, ronaldcastroi, ronaldgutierrezi, ronaldmurilloi, ronaldnavarroi, ronaldquirosi, ronaldzunigai, rosibelelizondoae, ruthfrancoae, sergiocascantei, sergioriosi, tiboshartae, vannesabrenesae, minornavarroi, victorbarrantesi, waldymedinai, wilbertharayai, williamcamposi, yeissonchavesi, yilbertalvaradoi, yolandarojasae, hazelcambroneroae, zeneidabolanosae.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                June 29 2020
                June 29 2020
                : 77
                : 151-165
                Article
                10.3897/jhr.77.50577
                © 2020

                Comments

                Comment on this article