6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tubocapsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins.

      The Journal of Biological Chemistry
      Acetylcysteine, chemistry, Apoptosis, Cell Cycle, drug effects, Cell Line, Tumor, Cell Proliferation, Cell Survival, Ergosterol, analogs & derivatives, pharmacology, HSP70 Heat-Shock Proteins, metabolism, HSP90 Heat-Shock Proteins, Humans, Oxygen, Protein Denaturation, Protein Folding, Sulfhydryl Compounds, Withanolides

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tubocapsenolide A (TA), a novel withanolide-type steroid, exhibits potent cytotoxicity against several human cancer cell lines. In the present study, we observed that treatment of human breast cancer MDA-MB-231 cells with TA led to cell cycle arrest at G(1) phase and apoptosis. The actions of TA were correlated with proteasome-dependent degradation of Cdk4, cyclin D1, Raf-1, Akt, and mutant p53, which are heat shock protein 90 (Hsp90) client proteins. TA treatment induced a transient increase in reactive oxygen species and a decrease in the intracellular glutathione contents. Nonreducing SDS-PAGE revealed that TA rapidly and selectively induced thiol oxidation and aggregation of Hsp90 and Hsp70, both in intact cells and in cell-free systems using purified recombinant proteins. Furthermore, TA inhibited the chaperone activity of Hsp90-Hsp70 complex in the luciferase refolding assay. N-Acetylcysteine, a thiol antioxidant, prevented all of the TA-induced effects, including oxidation of heat shock proteins, degradation of Hsp90 client proteins, and apoptosis. In contrast, non-thiol antioxidants (trolox and vitamin C) were ineffective to prevent Hsp90 inhibition and cell death. Taken together, our results demonstrate that the TA inhibits the activity of Hsp90-Hsp70 chaperone complex, at least in part, by a direct thiol oxidation, which in turn leads to the destabilization and depletion of Hsp90 client proteins and thus causes cell cycle arrest and apoptosis in MDA-MB-231 cells. Therefore, TA can be considered as a new type of inhibitor of Hsp90-Hsp70 chaperone complex, which has the potential to be developed as a novel strategy for cancer treatment.

          Related collections

          Author and article information

          Comments

          Comment on this article