25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0)

      , , ,
      Ecological Modelling
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.

          Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photosynthesis and nitrogen relationships in leaves of C3 plants

            The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol-1 Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field

              P. Jarvis (1976)
                Bookmark

                Author and article information

                Journal
                Ecological Modelling
                Ecological Modelling
                Elsevier BV
                03043800
                February 1997
                February 1997
                : 95
                : 2-3
                : 249-287
                Article
                10.1016/S0304-3800(96)00034-8
                76ad2ea2-86d4-4892-8cda-73d43351f9f0
                © 1997

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article