31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Macaque's-Eye View of Human Insertions and Deletions: Differences in Mechanisms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insertions and deletions (indels) cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup) is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments.

          Author Summary

          Insertions and deletions (indels) represent a significant source of evolutionary change. In this manuscript, the authors investigate the patterns of genome-wide rate variation for indels that occurred in the human lineage since its divergence from chimpanzee. Earlier work suggested that insertion and deletion rates are correlated, implying that some genomic factors might affect both types of mutations and thus their patterns of variation across the genome. However, sequences evolving under and without selection were considered together. The present study represents the first attempt to quantify the levels of variation in neutral indel rates in the framework of multiple regression analysis. The finding that insertion versus deletion rates correlate with different genomic features suggests that these two types of mutation are caused in part by distinct molecular mechanisms. This conclusion has direct implications for understanding human genetic diseases, since a large number of them are caused by indels, and contributes to the growing recognition of the importance of fine-scale rearrangement in shaping genome evolution.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary and biomedical insights from the rhesus macaque genome.

          The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An algorithm for progressive multiple alignment of sequences with insertions.

            Dynamic programming algorithms guarantee to find the optimal alignment between two sequences. For more than a few sequences, exact algorithms become computationally impractical, and progressive algorithms iterating pairwise alignments are widely used. These heuristic methods have a serious drawback because pairwise algorithms do not differentiate insertions from deletions and end up penalizing single insertion events multiple times. Such an unrealistically high penalty for insertions typically results in overmatching of sequences and an underestimation of the number of insertion events. We describe a modification of the traditional alignment algorithm that can distinguish insertion from deletion and avoid repeated penalization of insertions and illustrate this method with a pair hidden Markov model that uses an evolutionary scoring function. In comparison with a traditional progressive alignment method, our algorithm infers a greater number of insertion events and creates gaps that are phylogenetically consistent but spatially less concentrated. Our results suggest that some insertion/deletion "hot spots" may actually be artifacts of traditional alignment algorithms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high-resolution recombination map of the human genome.

              Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2007
                14 September 2007
                27 July 2007
                : 3
                : 9
                : e176
                Affiliations
                [1 ] Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
                [2 ] Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
                [3 ] Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
                University of Chicago, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: kdm16@ 123456psu.edu
                Article
                07-PLCB-RA-0308R2 plcb-03-09-08
                10.1371/journal.pcbi.0030176
                1976337
                17941704
                76d85d03-8846-4a70-8e0c-40a468a4f97e
                Copyright: © 2007 Kvikstad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 June 2007
                : 26 July 2007
                Page count
                Pages: 11
                Categories
                Research Article
                Computational Biology
                Homo (Human)
                Custom metadata
                Kvikstad EM, Tyekucheva S, Chiaromonte F, Makova KD (2007) A macaque's-eye view of human insertions and deletions: Differences in mechanisms. PLoS Comput Biol 3(9): e176. doi: 10.1371/journal.pcbi.0030176

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article