16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of urbanisation and altitude on the incidence of, and risk factors for, hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Most of the data regarding the burden of hypertension in low-income and middle-income countries comes from cross-sectional surveys instead of longitudinal studies. We estimated the incidence of, and risk factors for, hypertension in four study sites with different degree of urbanisation and altitude.

          Methods

          Data from the CRONICAS Cohort Study, conducted in urban, semiurban and rural areas in Peru, was used. An age-stratified and sex-stratified random sample of participants was taken from the most updated census available in each site. Hypertension was defined as systolic blood pressure ≥140 mm Hg, or diastolic blood pressure ≥90 mm Hg, or self-report physician diagnosis and current treatment. The exposures were study site and altitude as well as modifiable risk factors. Incidence, incidence rate ratios (IRRs), 95% CIs and population-attributable fractions (PAFs) were estimated using generalised linear models.

          Results

          Information from 3237 participants, mean age 55.8 (SD±12.7) years, 48.4% males, was analysed. Overall baseline prevalence of hypertension was 19.7% (95% CI 18.4% to 21.1%). A total of 375 new cases of hypertension were recorded, including 5266 person-years of follow-up, with an incidence of 7.12 (95% CI 6.44 to 7.88) per 100 person-years. Individuals from semiurban site were at higher risk of hypertension compared with highly urbanised areas (IRR=1.76; 95% CI 1.39 to 2.23); however, those from high-altitude sites had a reduced risk (IRR=0.74; 95% CI 0.58 to 0.95). Obesity was the leading risk factor for hypertension with a great variation according to study site with PAF ranging from 12.5% to 42.4%.

          Conclusions

          Our results suggest heterogeneity in the progression towards hypertension depending on urbanisation and site altitude.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants.

            Data for trends in blood pressure are needed to understand the effects of its dietary, lifestyle, and pharmacological determinants; set intervention priorities; and evaluate national programmes. However, few worldwide analyses of trends in blood pressure have been done. We estimated worldwide trends in population mean systolic blood pressure (SBP). We estimated trends and their uncertainties in mean SBP for adults 25 years and older in 199 countries and territories. We obtained data from published and unpublished health examination surveys and epidemiological studies (786 country-years and 5·4 million participants). For each sex, we used a Bayesian hierarchical model to estimate mean SBP by age, country, and year, accounting for whether a study was nationally representative. In 2008, age-standardised mean SBP worldwide was 128·1 mm Hg (95% uncertainty interval 126·7-129·4) in men and 124·4 mm Hg (123·0-125·9) in women. Globally, between 1980 and 2008, SBP decreased by 0·8 mm Hg per decade (-0·4 to 2·2, posterior probability of being a true decline=0·90) in men and 1·0 mm Hg per decade (-0·3 to 2·3, posterior probability=0·93) in women. Female SBP decreased by 3·5 mm Hg or more per decade in western Europe and Australasia (posterior probabilities ≥0·999). Male SBP fell most in high-income North America, by 2·8 mm Hg per decade (1·3-4·5, posterior probability >0·999), followed by Australasia and western Europe where it decreased by more than 2·0 mm Hg per decade (posterior probabilities >0·98). SBP rose in Oceania, east Africa, and south and southeast Asia for both sexes, and in west Africa for women, with the increases ranging 0·8-1·6 mm Hg per decade in men (posterior probabilities 0·72-0·91) and 1·0-2·7 mm Hg per decade for women (posterior probabilities 0·75-0·98). Female SBP was highest in some east and west African countries, with means of 135 mm Hg or greater. Male SBP was highest in Baltic and east and west African countries, where mean SBP reached 138 mm Hg or more. Men and women in western Europe had the highest SBP in high-income regions. On average, global population SBP decreased slightly since 1980, but trends varied significantly across regions and countries. SBP is currently highest in low-income and middle-income countries. Effective population-based and personal interventions should be targeted towards low-income and middle-income countries. Funding Bill & Melinda Gates Foundation and WHO. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological adaptation of the cardiovascular system to high altitude.

              Altitude exposure is associated with major changes in cardiovascular function. The initial cardiovascular response to altitude is characterized by an increase in cardiac output with tachycardia, no change in stroke volume, whereas blood pressure may temporarily be slightly increased. After a few days of acclimatization, cardiac output returns to normal, but heart rate remains increased, so that stroke volume is decreased. Pulmonary artery pressure increases without change in pulmonary artery wedge pressure. This pattern is essentially unchanged with prolonged or lifelong altitude sojourns. Ventricular function is maintained, with initially increased, then preserved or slightly depressed indices of systolic function, and an altered diastolic filling pattern. Filling pressures of the heart remain unchanged. Exercise in acute as well as in chronic high-altitude exposure is associated with a brisk increase in pulmonary artery pressure. The relationships between workload, cardiac output, and oxygen uptake are preserved in all circumstances, but there is a decrease in maximal oxygen consumption, which is accompanied by a decrease in maximal cardiac output. The decrease in maximal cardiac output is minimal in acute hypoxia but becomes more pronounced with acclimatization. This is not explained by hypovolemia, acid-bases status, increased viscosity on polycythemia, autonomic nervous system changes, or depressed systolic function. Maximal oxygen uptake at high altitudes has been modeled to be determined by the matching of convective and diffusional oxygen transport systems at a lower maximal cardiac output. However, there has been recent suggestion that 10% to 25% of the loss in aerobic exercise capacity at high altitudes can be restored by specific pulmonary vasodilating interventions. Whether this is explained by an improved maximum flow output by an unloaded right ventricle remains to be confirmed. Altitude exposure carries no identified risk of myocardial ischemia in healthy subjects but has to be considered as a potential stress in patients with previous cardiovascular conditions.
                Bookmark

                Author and article information

                Journal
                Heart
                Heart
                heartjnl
                heart
                Heart
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                1355-6037
                1468-201X
                June 2017
                23 January 2017
                : 103
                : 11
                : 827-833
                Affiliations
                [1 ]CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia , Lima, Peru
                [2 ]Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine , London, UK
                [3 ]Department of International Health, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, USA
                [4 ]Área de Investigación y Desarrollo, Asociación Benéfica PRISMA , Lima, Peru
                [5 ]Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University , Baltimore, USA
                [6 ]Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia , Lima, Peru
                Author notes
                [Correspondence to ] Dr Jaime Miranda, CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Av. Armendariz 497, Miraflores, Lima 18, Peru; Jaime.Miranda@ 123456upch.pe
                Article
                heartjnl-2016-310347
                10.1136/heartjnl-2016-310347
                5529980
                28115473
                77344e3e-f54f-400c-bce5-6aa616f1508c
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

                History
                : 15 August 2016
                : 9 November 2016
                : 16 November 2016
                Funding
                Funded by: National Heart, Lung, and Blood Institute, http://dx.doi.org/10.13039/100000050;
                Award ID: HHSN268200900033C
                Categories
                1506
                Special Populations
                Original article
                Custom metadata
                unlocked

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article