10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human cerebral cortex has tremendous cellular diversity. How different cell types are organized in the human cortex and how cellular organization varies across species remain unclear. Here, we performed spatially resolved single-cell profiling of 4,000 genes using multiplexed error-robust FISH (MERFISH), identified >100 transcriptionally distinct cell populations, and generated a molecularly defined and spatially resolved cell atlas of the human middle and superior temporal gyrus. We further explored cell-cell interactions arising from soma contact or proximity in a cell-type-specific manner. Comparison with the mouse cortex showed conservation in the laminar organization of cells and differences in somatic interactions across species. Notably, our data revealed human-specific cell-cell proximity patterns and showed a markedly increased enrichment for interactions between neurons and non-neuronal cells in the human cortex.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive Integration of Single-Cell Data

          Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression

            Single-cell RNA-seq (scRNA-seq) data exhibits significant cell-to-cell variation due to technical factors, including the number of molecules detected in each cell, which can confound biological heterogeneity with technical effects. To address this, we present a modeling framework for the normalization and variance stabilization of molecular count data from scRNA-seq experiments. We propose that the Pearson residuals from “regularized negative binomial regression,” where cellular sequencing depth is utilized as a covariate in a generalized linear model, successfully remove the influence of technical characteristics from downstream analyses while preserving biological heterogeneity. Importantly, we show that an unconstrained negative binomial model may overfit scRNA-seq data, and overcome this by pooling information across genes with similar abundances to obtain stable parameter estimates. Our procedure omits the need for heuristic steps including pseudocount addition or log-transformation and improves common downstream analytical tasks such as variable gene selection, dimensional reduction, and differential expression. Our approach can be applied to any UMI-based scRNA-seq dataset and is freely available as part of the R package sctransform, with a direct interface to our single-cell toolkit Seurat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dimensionality reduction for visualizing single-cell data using UMAP

              Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.
                Bookmark

                Author and article information

                Journal
                0404511
                7473
                Science
                Science
                Science (New York, N.Y.)
                0036-8075
                1095-9203
                5 July 2022
                July 2022
                30 June 2022
                08 July 2022
                : 377
                : 6601
                : 56-62
                Affiliations
                [1 ]Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
                [2 ]Allen Institute for Brain Science, Seattle, WA 98109, USA.
                Author notes
                [*]

                These authors contributed equally to this work

                Author contributions: E.L. and X.Z. conceived the study. R.F., C.X., and X.Z. designed experiments with input from J.C., M.Z., J.H., B.L., J.M. and E.L.. M.Z. and J.H. performed human tissue MERFISH protocol testing. C.X. and J.M. designed the MERFISH gene panel. J.C. performed human tissue processing and quality testing. R.F., C.X., Z.H., and A.H. performed MERFISH experiments. R.F. and C.X. performed data analysis. R.F., C.X., J.C., B.L., J.M., E.L., and X.Z. evaluated experimental results. R.F. and X.Z. wrote the paper with input from C.X., J.C., M.Z., J.H., Z.H., A.H., B.L., J.M. and E.L.. X.Z. oversaw the project.

                []Corresponding author. zhuang@ 123456chemistry.harvard.edu (X.Z.)
                Article
                NIHMS1820958
                10.1126/science.abm1741
                9262715
                35771910
                77411063-aa4d-4b68-9432-f2c6471dc9c0

                exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

                This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article