0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adsorption to the Surface of Hemozoin Crystals: Structure‐Based Design and Synthesis of Amino‐Phenoxazine β‐Hematin Inhibitors

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          A short history of SHELX

          An account is given of the development of the SHELX system of computer programs from SHELX -76 to the present day. In addition to identifying useful innovations that have come into general use through their implementation in SHELX , a critical analysis is presented of the less-successful features, missed opportunities and desirable improvements for future releases of the software. An attempt is made to understand how a program originally designed for photographic intensity data, punched cards and computers over 10000 times slower than an average modern personal computer has managed to survive for so long. SHELXL is the most widely used program for small-molecule refinement and SHELXS and SHELXD are often employed for structure solution despite the availability of objectively superior programs. SHELXL also finds a niche for the refinement of macromolecules against high-resolution or twinned data; SHELXPRO acts as an interface for macromolecular applications. SHELXC , SHELXD and SHELXE are proving useful for the experimental phasing of macromolecules, especially because they are fast and robust and so are often employed in pipelines for high-throughput phasing. This paper could serve as a general literature citation when one or more of the open-source SHELX programs (and the Bruker AXS version SHELXTL ) are employed in the course of a crystal-structure determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue.

            Clinical studies and mathematical models predict that, to achieve malaria elimination, combination therapies will need to incorporate drugs that block the transmission of Plasmodium falciparum sexual stage parasites to mosquito vectors. Efforts to measure the activity of existing antimalarials on intraerythrocytic sexual stage gametocytes and identify transmission-blocking agents have, until now, been hindered by a lack of quantitative assays. Here, we report an experimental system using P. falciparum lines that stably express gametocyte-specific GFP-luciferase reporters, which enable the assessment of dose- and time-dependent drug action on gametocyte maturation and transmission. These studies reveal activity of the first-line antimalarial dihydroartemisinin and the partner drugs lumefantrine and pyronaridine against early gametocyte stages, along with moderate inhibition of mature gametocyte transmission to Anopheles mosquitoes. The other partner agents monodesethyl-amodiaquine and piperaquine showed activity only against immature gametocytes. Our data also identify methylene blue as a potent inhibitor of gametocyte development across all stages. This thiazine dye almost fully abolishes P. falciparum transmission to mosquitoes at concentrations readily achievable in humans, highlighting the potential of this chemical class to reduce the spread of malaria.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen

              G Wulff (1901)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ChemMedChem
                ChemMedChem
                Wiley
                1860-7179
                1860-7187
                May 18 2022
                April 26 2022
                May 18 2022
                : 17
                : 10
                Affiliations
                [1 ]Department of Chemistry and Polymer Science Stellenbosch University Private BagX1 Matieland 7602 South Africa
                [2 ]Department of Biochemistry Stellenbosch University Private BagX1 Matieland 7602 South Africa
                [3 ]Department of Biochemistry, Genetics and Microbiology Institute for Sustainable Malaria Control University of Pretoria Pretoria 0028 South Africa
                Article
                10.1002/cmdc.202200139
                9119941
                35385211
                77666888-bc32-4788-a463-a847597a0448
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article