23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Yiqi Tongyang on HCN4 Protein Phosphorylation in Damaged Rabbit Sinoatrial Node Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hyperpolarization-activated cyclic nucleotide-gated cation channel ( I f ) is closely associated with sinoatrial node pacing function. The present study aimed to investigate the molecular mechanisms involved in pacing function improvements of damaged sinoatrial node cells and the consequent treatment effects on sick sinus syndrome (SSS) after the use of Yiqi Tongyang. HCN4 channel protein expression and phosphorylation were measured by immunoblotting and fluorescent quantitation. After ischemia-reperfusion injury (model group), the HCN4 protein and the optical density (OD) of the phosphorylated HCN4 protein as well as intracellular PKA activity in the sinoatrial node cells decreased significantly. However, the OD values and PKA activity increased to different degrees after treatment with serum containing different doses of Yiqi Tongyang; in contrast, no significant improvement was seen in the control group compared to the model group. These findings demonstrated that the use of the traditional Chinese medicine Yiqi Tongyang could increase HCN4 protein expression and phosphorylation as well as PKA activity within sinoatrial node cells damaged by ischemia-reperfusion. The HCN4 protein is involved in the I f -related ion channel. Here, we speculated that these effects could be associated with upregulation of HCN4 protein phosphorylation, which consequently improved cell automaticity, increased heart rate, and had treatment effects on SSS.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Sick sinus syndrome: a review.

          Sick sinus syndrome refers to a collection of disorders marked by the heart's inability to perform its pacemaking function. Predominantly affecting older adults, sick sinus syndrome comprises various arrhythmias, including bradyarrhythmias with or without accompanying tachyarrhythmias. At least 50 percent of patients with sick sinus syndrome develop alternating bradycardia and tachycardia, also known as tachy-brady syndrome. Sick sinus syndrome results from intrinsic causes, or may be exacerbated or mimicked by extrinsic factors. Intrinsic causes include degenerative fibrosis, ion channel dysfunction, and remodeling of the sinoatrial node. Extrinsic factors can be pharmacologic, metabolic, or autonomic. Signs and symptoms are often subtle early on and become more obvious as the disease progresses. They are commonly related to end-organ hypoperfusion. Cerebral hypoperfusion is most common, with syncope or near-fainting occurring in about one-half of patients. Diagnosis may be challenging, and is ultimately made by electrocardiographic identification of the arrhythmia in conjunction with the presence of symptoms. If electrocardiography does not yield a diagnosis, inpatient telemetry monitoring, outpatient Holter monitoring, event monitoring, or loop monitoring may be used. Electrophysiologic studies also may be used but are not routinely needed. Treatment of sick sinus syndrome includes removing extrinsic factors, when possible, and pacemaker placement. Pacemakers do not reduce mortality, but they can decrease symptoms and improve quality of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node

            The sympathetic nervous system increases heart rate by activating β adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (If) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. If is produced by hyperpolarization-activated cyclic nucleotide–sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. β adrenergic regulation of If in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of β adrenergic agonists to shift the voltage dependence of If in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of If. Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion.

              Involvement of ceramide signaling in the initiation of apoptosis induction in myocardial cells by in vitro and in vivo ischemia and reperfusion was analyzed. Synthetic cell permeable C2-ceramide induced apoptotic death of rat neonatal cardiomyocytes in vitro. In vitro ischemia (oxygen/serum/glucose deprivation) led to a progressive accumulation of ceramide in cardiomyocytes. After 16 hours of simulated in vitro reperfusion (readdition of oxygen, serum and glucose), the level of ceramide in surviving cells was found to have returned to baseline, whereas, levels in nonadherent dead cells remained high. In the rat heart left coronary artery occlusion model, ischemia with the subsequent reperfusion, but not ischemia alone, induced apoptosis in myocardial cells as demonstrated by DNA electrophoresis and measurement of soluble chromatin degradation products. The content of ceramide in ischemic area was elevated to 155% baseline levels at 30 minutes, and to 330% after 210 minutes of ischemia. Ischemia (30 minutes) followed by reperfusion (180 minutes) increased the ceramide level to 250% in the ischemic area. The combination of results obtained in both in vitro and animal models demonstrate for the first time that ceramide signaling can be involved in ischemia/reperfusion death of myocardial cells.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2016
                16 March 2016
                16 March 2016
                : 2016
                : 4379139
                Affiliations
                Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
                Author notes

                Academic Editor: Alfredo Vannacci

                Article
                10.1155/2016/4379139
                4812276
                27069490
                77e91886-4b87-46f2-a8a9-0807bcb166bf
                Copyright © 2016 Jinfeng Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 October 2015
                : 27 January 2016
                : 2 March 2016
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article