Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wearable Sensors for Supporting Diagnosis, Prognosis, and Monitoring of Neurodegenerative Diseases

      , ,
      Electronics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The incidence of neurodegenerative disorders (NDs) is increasing in an aging population [...]

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Bradykinesia Detection in Parkinson’s Disease Using Smartwatches’ Inertial Sensors and Deep Learning Methods

          Bradykinesia is the defining motor symptom of Parkinson’s disease (PD) and is reflected as a progressive reduction in speed and range of motion. The evaluation of bradykinesia severity is important for assessing disease progression, daily motor fluctuations, and therapy response. However, the clinical evaluation of PD motor signs is affected by subjectivity, leading to intra- and inter-rater variability. Moreover, the clinical assessment is performed a few times a year during pre-scheduled follow-up visits. To overcome these limitations, objective and unobtrusive methods based on wearable motion sensors and machine learning (ML) have been proposed, providing promising results. In this study, the combination of inertial sensors embedded in consumer smartwatches and different ML models is exploited to detect bradykinesia in the upper extremities and evaluate its severity. Six PD subjects and seven age-matched healthy controls were equipped with a consumer smartwatch and asked to perform a set of motor exercises for at least 6 weeks. Different feature sets, data representations, data augmentation methods, and ML models were implemented and combined. Data recorded from smartwatches’ motion sensors, properly augmented and fed to a combination of Convolutional Neural Network and Random Forest model, provided the best results, with an accuracy of 0.86 and an area under the curve (AUC) of 0.94. Results suggest that the combination of consumer smartwatches and ML classification methods represents an unobtrusive solution for the detection of bradykinesia and the evaluation of its severity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Predicting Alzheimer’s Disease Using Deep Neuro-Functional Networks with Resting-State fMRI

            Resting-state functional connectivity has been widely used for the past few years to forecast Alzheimer’s disease (AD). However, the conventional correlation calculation does not consider different frequency band features that may hold the brain atrophies’ original functional connectivity relationships. Previous works focuses on low-order neurodynamics and precisely manipulates the mono-band frequency span of resting-state functional magnetic imaging (rs-fMRI). They specifically use the mono-band frequency span of rs-fMRI, leaving out the high-order neurodynamics. By creating a high-order neuro-dynamic functional network employing several levels of rs-fMRI time-series data, such as slow4, slow5, and full-band ranges of (0.027 to 0.08 Hz), (0.01 to 0.027 Hz), and (0.01 to 0.08 Hz), we suggest an automated AD diagnosis system to address these challenges. It combines multiple customized deep learning models to provide unbiased evaluation, and a tenfold cross-validation is observed We have determined that to differentiate AD disorders from NC, the entire band ranges and slow4 and slow5, referred to as higher and lower frequency band approaches, are applied. The first method uses the SVM and KNN to deal with AD diseases. The second method uses the customized Alexnet and Inception blocks with rs-fMRI datasets from the ADNI organizations. We also tested the other machine learning and deep learning approaches by modifying various parameters and attained good accuracy levels. Our proposed model achieves good performance using three bands without any external feature selection. The results show that our system performance of accuracy (96.61%)/AUC (0.9663) is achieved in differentiating the AD subjects from normal controls. Furthermore, the good accuracies in classifying multiple stages of AD show the potentiality of our method for the clinical value of AD prediction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              EdgeTrust: A Lightweight Data-Centric Trust Management Approach for IoT-Based Healthcare 4.0

              Internet of Things (IoT) is bringing a revolution in today’s world where devices in our surroundings become smart and perform daily-life activities and operations with more precision. The architecture of IoT is heterogeneous, providing autonomy to nodes so that they can communicate with other nodes and exchange information at any time. IoT and healthcare together provide notable facilities for patient monitoring. However, one of the most critical challenges is the identification of malicious and compromised nodes. In this article, we propose a machine learning-based trust management approach for edge nodes to identify nodes with malicious behavior. The proposed mechanism utilizes knowledge and experience components of trust, where knowledge is further based on several parameters. To prevent the successful execution of good and bad-mouthing attacks, the proposed approach utilizes edge clouds, i.e., local data centers, to collect recommendations to evaluate indirect and aggregated trust. The trustworthiness of nodes is ranked between a certain limit, and only those nodes that satisfy the threshold value can participate in the network. To validate the performance of the proposed approach, we have performed extensive simulations in comparison with existing approaches. The results show the effectiveness of the proposed approach against several potential attacks.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ELECGJ
                Electronics
                Electronics
                MDPI AG
                2079-9292
                March 2023
                March 07 2023
                : 12
                : 6
                : 1269
                Article
                10.3390/electronics12061269
                782e1a17-9d01-443c-8ec6-e7c369906543
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article