5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Health Benefits of Fruits and Vegetables

      editorial
      * ,
      Foods
      MDPI
      fruits, vegetables, biological studies, processing techniques

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We edited this Special Issue with the objective of bringing forth new data on the phytochemicals from vegetables and fruits, which are recommended for their health-promoting properties. Epidemiological, toxicological and nutritional studies suggested an association between fruit and vegetable consumption and lower incidence of chronic diseases, such as coronary heart problems, cancer, diabetes, and Alzheimer’s disease. In this Special Issue, the protective roles (antioxidant and others bioactivities), new sustainable approaches to determine the quality, and the processing techniques that can modify the initial nutritional and antioxidant content of fruits, vegetables and additives have been addressed.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Somatic mutation and recombination test in Drosophila melanogaster.

          A novel test system for the detection of mutagenic and recombinogenic activity of chemicals is described in detail. Drosophila melanogaster larvae trans-heterozygous for the mutations multiple wing hairs (mwh) and flare (flr) are exposed to the test compounds for various periods of time ranging from 96 hr to 1 hr. Induced mutations are detected as single mosaic spots on the wing blade of surviving adults that show either the multiple wing hairs or flare phenotype. Induced recombination leads to mwh and flr twin spots and also to a certain extent, to mwh single spots. Recording of the frequency and the size of the different spots allows for a quantitative determination of the mutagenic and recombinogenic effects. This and earlier studies with a small set of well-known mutagens indicate that the test detects monofunctional and polyfunctional alkylating agents (ethyl methanesulfonate, diepoxybutane, mitomycin C, Trenimon), mutagens forming large adducts (aflatoxin B1), DNA breaking agents (bleomycin), intercalating agents (5-aminoacridine, ICR-170), spindle poisons (vinblastine), and antimetabolites (methotrexate). In addition, the test detects mutagens unstable in aqueous solution (beta-propiolactone), gaseous mutagens (1,2-dibromoethane), as well as promutagens needing various pathways of metabolic activation (aflatoxin B1, diethylnitrosamine, dimethylnitrosamine, mitomycin C, and procarbazine). The rapidity and ease of performance as well as the low costs of the test necessitate a high priority for validation of this promising Drosophila short-term test.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Flavonoid-Rich Extract of Actinidia macrosperma (A Wild Kiwifruit) Inhibits Angiotensin-Converting Enzyme In Vitro

            Increasing interest in flavonoids in kiwifruit is due to the health-promoting properties of these bioactives. Inhibition of the angiotensin-converting enzyme (ACE) is one of the main therapeutic targets in controlling hypertension. The present study investigated the ACE inhibitory activity of flavonoid-rich extracts obtained from different kiwifruit genotypes. The flavonoid-rich extracts were prepared from fruits of Actinidia macrosperma, Actinidia deliciosa cv Hayward (Green kiwifruit), and Actinidia chinensis cv Hort 16A (Gold kiwifruit) by steeping the lyophilized fruit samples in 70% aqueous acetone, followed by partitioning the crude extracts with hexane. The composition of each extract was analyzed using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The ACE inhibitory activity of the fruit extracts was performed using a fluorescence-based biochemical assay. The subclass flavonol was the most abundant group of flavonoids detected in all the extracts tested from three different kiwifruit cultivars. Quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside, quercetin-3-O-arabinoglucoside, catechin, epigallocatechin gallate, epigallocatechin, chlorogenic, ferulic, isoferulic, and caffeic acid were prominent phenolics found in A. macrosperma kiwifruit. Overall, the flavonoid-rich extract from A. macrosperma showed a significantly (p < 0.05) high percentage of inhibition (IC50 = 0.49 mg/mL), and enzyme kinetic studies suggested that it inhibits ACE activity in vitro. The kiwifruit extracts tested were found to be moderately effective as ACE inhibitors in vitro when compared to the other plant extracts reported in the literature. Further studies should be carried out to identify the active compounds from A. macrosperma and to validate the findings using experimental animal models of hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems

              (1) Background: The suitability of certain food colorings is nowadays in discussion because of the effects of these compounds on human health. For this reason, in the present work, the biological effects of six worldwide used food colorings (Riboflavin, Tartrazine, Carminic Acid, Erythrosine, Indigotine, and Brilliant Blue FCF) were analyzed using two model systems. (2) Methods: In vivo toxicity, antitoxicity, and longevity assays using the model organism Drosophila melanogaster and in vitro cytotoxicity, DNA fragmentation, and methylation status assays using HL-60 tumor human cell line were carried out. (3) Results: Our in vivo results showed safe effects in Drosophila for all the food coloring treatments, non-significant protective potential against an oxidative toxin, and different effects on the lifespan of flies. The in vitro results in HL-60 cells, showed that the tested food colorings increased tumor cell growth but did not induce any DNA damage or modifications in the DNA methylation status at their acceptable daily intake (ADI) concentrations. (4) Conclusions: From the in vivo and in vitro studies, these results would support the idea that a high chronic intake of food colorings throughout the entire life is not advisable.
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                23 March 2020
                March 2020
                : 9
                : 3
                : 369
                Affiliations
                Agri-Food Laboratory, Council of Agriculture, Fisheries and Rural Development of Andalusia (CAPDER), 14004 Córdoba, Spain; rafaelm.font@ 123456juntadeandalucia.es
                Author notes
                [* ]Correspondence: mercedes.rio.celestino@ 123456juntadeandalucia.es ; Tel.: +34-671-532-238
                Author information
                https://orcid.org/0000-0001-9130-2669
                Article
                foods-09-00369
                10.3390/foods9030369
                7143647
                32209967
                7897ce48-31fb-4ffa-bf2c-4a92647b5a15
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 March 2020
                : 17 March 2020
                Categories
                Editorial

                fruits,vegetables,biological studies,processing techniques

                Comments

                Comment on this article