12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A case of Exophiala oligosperma successfully treated with voriconazole

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exophiala oligosperma is an uncommon pathogen associated with human infections, predominantly in immunocompromised hosts. Case reports of clinical infections related to E. oligosperma have been limited to 6 prior publications, all of which have shown limited susceptibility to conventional antifungal therapies, including amphotericin B, itraconazole, and fluconazole. We describe the first case of an E. oligosperma induced soft-tissue infection successfully treated with a 3-month course of voriconazole without persisting lesions.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Dishwashers--a man-made ecological niche accommodating human opportunistic fungal pathogens.

          Habitats in human households may accommodate microorganisms outside the common spectrum of ubiquitous saprobes. Enrichment of fungi that may require specific environmental conditions was observed in dishwashers, 189 of which were sampled in private homes of 101 towns or communities. One-hundred-two were sampled from various localities in Slovenia; 42 from other European countries; 13 and 3 from North and South America, respectively; 5 from Israel; 10 from South Africa; 7 from Far East Asia; and 7 from Australia. Isolation was performed on samples incubated at 37°C. Species belonging to genera Aspergillus, Candida, Magnusiomyces, Fusarium, Penicillium and Rhodotorula were found occasionally, while the black yeasts Exophiala dermatitidis and Exophiala phaeomuriformis (Chaetothyriales) were persistently and most frequently isolated. Sixty-two percent of the dishwashers were positive for fungi, and 56% of these accommodated Exophiala. Both Exophiala species are known to be able to cause systemic disease in humans and frequently colonize the lungs of patients with cystic fibrosis. We conclude that high temperature, high moisture and alkaline pH values typically occurring in dishwashers can provide an alternative habitat for species also known to be pathogenic to humans. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrum of clinically relevant Exophiala species in the United States.

            Numerous members of the genus Exophiala are potential agents of human and animal mycoses. The majority of these infections are cutaneous and superficial, but also fatal systemic infections are known. We re-identified 188 clinical isolates from the United States, which had a preliminary morphological identification of Exophiala species, by sequencing internal transcribed spacer (ITS) region of the rRNA. Molecular identifications of the strains were as follows, in order of frequency: 55 E. dermatitidis (29.3%), 37 E. xenobiotica (19.7%), 35 E. oligosperma (18.6%), 13 E. lecanii-corni (6.9%), 12 E. phaeomuriformis (6.4%), 7 E. jeanselmei (3.7%), 7 E. bergeri (3.7%), 6 E. mesophila (3.2%), 5 E. spinifera (2.7%), 3 Exophiala sp. 1 (1.6%), 3 E. attenuata (1.6%), 3 Phialophora europaea (1.3%), 1 E. heteromorpha (0.5%), and 1 Exophiala sp. 2 (0.5%) strains. Exophiala strains were repeatedly isolated from deep infections (39.9%) involving lung, pleural fluid, sputum, digestive organs (stomach, intestines, bile), heart, brain, spleen, bone marrow, blood, dialysis fluid, lymph node, joint, breast, middle ear, throat, and intraocular tissues. About 38.3% of the Exophiala spp. strains were agents of cutaneous infections including skin, mucous membranes, nail, and corneal epithelium lesions. The other strains caused superficial infections (0.5%, including hair) or subcutaneous infection (12.0%, including paranasal sinusitis, mycetoma, and subcutaneous cyst). The systemic infections were preponderantly caused by E. dermatitidis, E. oligosperma, E. phaeomuriformis, E. xenobiotica, and E. lecanii-corni. Strains of E. bergeri, E. spinifera, E. jeanselmei, E. mesophila, and E. attenuata mainly induced cutaneous and subcutaneous infections. Since relatively few unknown ITS motifs were encountered, we suppose that the list of opportunistic Exophiala species in temperate climates is nearing completion, but a number of species still have to be described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest

              The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagules
                Bookmark

                Author and article information

                Contributors
                Journal
                Med Mycol Case Rep
                Med Mycol Case Rep
                Medical Mycology Case Reports
                Elsevier
                2211-7539
                8 September 2013
                8 September 2013
                2013
                : 2
                : 144-147
                Affiliations
                [a ]Medical University of South Carolina, Charleston, SC 29414, USA
                [b ]Brody School of Medicine – East Carolina University, Greenville, NC 27834, USA
                [c ]University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
                Author notes
                [* ]Corresponding author. Tel.: +1 845 667 6364. Bassamrimawi@ 123456yahoo.com
                Article
                S2211-7539(13)00046-8
                10.1016/j.mmcr.2013.08.003
                3885957
                78bf2c23-1a3e-4350-aec1-252b5d076177
                © 2013 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 June 2013
                : 27 August 2013
                : 30 August 2013
                Categories
                Article

                exophiala oligosperma,fungus,voriconazole,phaeohyphomycosis,mycetoma

                Comments

                Comment on this article