14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-139-5P inhibits human prostate cancer cell proliferation by targeting Notch1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite an improvement in the efficacy of chemotherapeutic agents, the outcome of patients with prostate cancer remains poor. MicroRNA (miRNA/miR)-139 expression is often downregulated in multiple types of tumor, including in prostate cancer. The aim of the present study was to investigate the inhibitory effect of miR-139 on the PC-3, C4-2B and LNCaP prostate cancer cell lines. Analysis of the cell cycle of PC-3, C4-2B and LNCaP cells transfected with miR-139 revealed a significantly increased percentage of cells in the G 1 phase and a decreased percentage in the S and G 2 phases compared with those transfected with a negative control miRNA. The growth inhibitory rate of miR-139-transfected cells 24, 48 and 72 h after transfection were 32.83±2.61, 52.58±3.2 and 62.36±4.55% in PC-3 cells; 30.28±2.25, 51.74±3.27 and 60.80±3.58% in C4-2B cells; and 33.20±2.67, 51.83±3.59 and 61.79±4.85% in LNCaP cells, respectively. The present study revealed that miR-139 inhibited the proliferation of prostate cancer cells by interfering with the cell cycle. Further study into the mechanism by which this happened suggested that miR-139 reduced cyclin D1 expression and inhibited cell proliferation through targeting Notch1.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer.

            The Notch ligand, JAG1 is associated with breast cancer recurrence. Herein, we report on a genomics approach to elucidate mechanisms downstream of JAG1 that promote breast cancer growth. In a survey of 46 breast cancer cell lines, we found that triple negative (TN; basal and mesenchymal ER-, PR-, and Her2-negative) lines express JAG1 at significantly higher levels than do HER2(+) or luminal (ER(+)) Her2(-) cell lines. In contrast to the luminal lines tested (T47D and MCF7), TN breast cancer cell lines (HCC1143 and MDA MB231) display high-level JAG1 expression and growth inhibition with RNA interference-induced JAG1 down-regulation. We used microarray profiling of TN tumor cells transfected with JAG1 siRNA to identify JAG1-regulated genes (P or=1.5). Among JAG1-regulated genes identified, cyclin D1 was found to be a direct target of NOTCH1 and NOTCH3. We show that JAG1 down-regulation reduces direct binding of Notch to the cyclin D1 promoter, reduced cyclin D1 expression and inhibition of cell cycle progression through the cyclin D1-dependant G1/S checkpoint. Furthermore, we show that cyclin D1 and JAG1 expression correlate in TN breast cancer expression datasets. These data suggest a model whereby JAG1 promotes cyclin D1-mediated proliferation of TN breast cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Circulating MicroRNA Signature as a Biomarker for Prostate Cancer in a High Risk Group

              Introduction: Mi(cro)RNAs are small non-coding RNAs whose differential expression in tissue has been implicated in the development and progression of many malignancies, including prostate cancer. The discovery of miRNAs in the blood of patients with a variety of malignancies makes them an ideal, novel biomarker for prostate cancer diagnosis. The aim of this study was to identify a unique expression profile of circulating miRNAs in patients with prostate cancer attending a rapid access prostate assessment clinic. Methods: To conduct this study blood and tissue samples were collected from 102 patients (75 with biopsy confirmed cancer and 27 benign samples) following ethical approval and informed consent. These patients were attending a prostate assessment clinic. Samples were reverse-transcribed using stem-loop primers and expression levels of each of 12 candidate miRNAs were determined using real-time quantitative polymerase chain reaction. miRNA expression levels were then correlated with clinicopathological data and subsequently analysed using qBasePlus software and Minitab. Results: Circulating miRNAs were detected and quantified in all subjects. The analysis of miRNA mean expression levels revealed that four miRNAs were significantly dysregulated, including let-7a (p = 0.005) which has known tumour suppressor characteristics, along with miR-141 (p = 0.01) which has oncogenic characteristics. In 20 patients undergoing a radical retropubic-prostatectomy, the expression levels of miR-141 returned to normal at day 10 post-operatively. A panel of four miRNAs could be used in combination to detect prostate cancer with an area under the curve (AUC) of 0.783 and a PPV of 80%. Conclusion: These findings identify a unique expression profile of miRNA detectable in the blood of prostate cancer patients. This confirms their use as a novel, diagnostic biomarker for prostate cancer.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                July 2018
                22 May 2018
                22 May 2018
                : 16
                : 1
                : 793-800
                Affiliations
                Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
                Author notes
                Correspondence to: Dr Juncheng Wei, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, P.R. China, E-mail: wjcwjc999@ 123456126.com
                [*]

                Contributed equally

                Article
                OL-0-0-8773
                10.3892/ol.2018.8773
                6019920
                78ce2dcd-4356-453c-bcae-f0cea4f64c43
                Copyright: © Sun et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 09 December 2015
                : 11 April 2018
                Categories
                Articles

                Oncology & Radiotherapy
                microrna-139,proliferation,notch1
                Oncology & Radiotherapy
                microrna-139, proliferation, notch1

                Comments

                Comment on this article