29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interfacial Dzyaloshinskii-Moriya interaction (DMI) in an in-plane anisotropic Pt(4nm)/Co(1.6nm)/Ni(1.6nm) film has been directly observed by Brillouin spectroscopy. It is manifested in the asymmetry of the measured magnon dispersion relation, from which the DMI constant has been evaluated. Linewidth measurements reveal that the lifetime of the magnons is asymmetric with respect to their counter-propagating directions. The lifetime asymmetry is dependent on the magnon frequency, being more pronounced the higher the frequency. Analytical calculations of the magnon dispersion relation and linewidth agree well with experiments.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Skyrmion Lattice in a Chiral Magnet

          Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skyrmion flow near room temperature in an ultralow current density.

            The manipulation of spin textures with electric currents is an important challenge in the field of spintronics. Many attempts have been made to electrically drive magnetic domain walls in ferromagnets, yet the necessary current density remains quite high (~10(7) A cm(-2)). A recent neutron study combining Hall effect measurements has shown that an ultralow current density of J~10(2) A cm(-2) can trigger the rotational and translational motion of the skyrmion lattice in MnSi, a helimagnet, within a narrow temperature range. Raising the temperature range in which skyrmions are stable and reducing the current required to drive them are therefore desirable objectives. Here we demonstrate near-room-temperature motion of skyrmions driven by electrical currents in a microdevice composed of the helimagnet FeGe, by using in-situ Lorentz transmission electron microscopy. The rotational and translational motions of skyrmion crystal begin under critical current densities far below 100 A cm(-2).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observation of the Magnon Hall Effect

              The Hall effect usually occurs when the Lorentz force acts on a charge current in a conductor in the presence of perpendicular magnetic field. On the other hand, neutral quasi-particles such as phonons and spins can carry heat current and potentially show the Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin wave is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential as in the intrinsic anomalous Hall effect in metallic ferromagnets.
                Bookmark

                Author and article information

                Journal
                2014-09-30
                2015-01-29
                Article
                10.1103/PhysRevLett.114.047201
                1409.8570
                790ecf59-cd10-45bf-8de9-57d7d1cfcff1

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. Lett. 114, 047201 (2015)
                15 pages, 4 figures
                cond-mat.mtrl-sci cond-mat.mes-hall

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article