6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Paclitaxel-Nanodiamond Nanocomplexes Enhance Aqueous Dispersibility and Drug Retention in Cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanodiamonds (NDs) with 5 nm crystalline structures have been recognized as emerging carbon delivery vehicles due to their biocompatible inertness, high surface-to-volume ratio, and energy absorbance properties. In this study, carboxylated nanodiamond (ND-COOH) was reduced to hydroxylated nanodiamond (ND-OH) for stable and pH-independent colloidal dispersity. The poorly water-soluble paclitaxel (PTX) was physically loaded into ND-OH clusters, forming amorphous PTX nanostructure on the interparticle nanocage of the ND substrate. Stable physical PTX loading onto the ND substrate with stable colloidal stability showed enhanced PTX release. ND-OH/PTX complexes retained the sustained release of PTX by up to 97.32% at 70 h, compared with the 47.33% release of bare crystalline PTX. Enhanced PTX release from ND substrate showed low cell viability in Hela, MCF-9, and A549 cancer cells due to sustained release and stable dispersity in a biological aqueous environment. Especially, the IC50 values of ND-OH/PTX complexes and PTX in Hela cells were 0.037 μg/mL and 0.137 μg/mL, respectively. Well-dispersed cellular uptake of suprastructure ND-OH/PTX nanocomplexes was directly observed from the TEM images. ND-OH/PTX nanocomplexes assimilated into cells might provide convective diffusion with high PTX concentration, inducing initial necrosis. This study suggests that poorly water-soluble drugs can be formulated into a suprastructure with ND and acts as a highly concentrated drug reservoir directly within a cell.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Sep 14 2016
          : 8
          : 36
          Affiliations
          [1 ] College of Pharmacy, Dongguk University-Seoul , Gyeonggi 410-820, Republic of Korea.
          [2 ] School of Chemical Engineering and Material Science, Chung-Ang University , Seoul 156-756, Republic of Korea.
          Article
          10.1021/acsami.6b08079
          27547845
          79647313-6100-4cff-809a-8490e91f347a
          History

          carboxylated,cellular uptake,colloidal stability,drug delivery,hydroxylated,nanodiamond,paclitaxel

          Comments

          Comment on this article