51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective Effect of Bexarotene in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1 G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1 G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The multifunctional nucleolus.

          The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

            Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lysosomal membrane permeabilization in cell death.

              Mitochondrial outer membrane permeabilization (MOMP) constitutes one of the major checkpoint(s) of apoptotic and necrotic cell death. Recently, the permeabilization of yet another organelle, the lysosome, has been shown to initiate a cell death pathway, in specific circumstances. Lysosomal membrane permeabilization (LMP) causes the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol. LMP is induced by a plethora of distinct stimuli including reactive oxygen species, lysosomotropic compounds with detergent activity, as well as some endogenous cell death effectors such as Bax. LMP is a potentially lethal event because the ectopic presence of lysosomal proteases in the cytosol causes digestion of vital proteins and the activation of additional hydrolases including caspases. This latter process is usually mediated indirectly, through a cascade in which LMP causes the proteolytic activation of Bid (which is cleaved by the two lysosomal cathepsins B and D), which then induces MOMP, resulting in cytochrome c release and apoptosome-dependent caspase activation. However, massive LMP often results in cell death without caspase activation; this cell death may adopt a subapoptotic or necrotic appearance. The regulation of LMP is perturbed in cancer cells, suggesting that specific strategies for LMP induction might lead to novel therapeutic avenues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                01 July 2015
                2015
                : 9
                : 250
                Affiliations
                [1] 1Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria , Santander, Spain
                [2] 2Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria , Santander, Spain
                Author notes

                Edited by: Pier Giorgio Mastroberardino, Erasmus MC University Medical Center Rotterdam, Netherlands

                Reviewed by: Gunnar P. H. Dietz, Schwabe Pharma Deutschland, Germany; Khursheed Wani, University of Michigan, USA

                *Correspondence: Miguel Lafarga, Department of Anatomy and Cell Biology, University of Cantabria, Av Cardenal Herrera Oria s/n 39008, Santander 39011, Spain, lafargam@ 123456unican.es
                Article
                10.3389/fncel.2015.00250
                4486838
                796f55ef-04b6-4c96-a8c5-a3240afcc16e
                Copyright © 2015 Riancho, Ruiz-Soto, Berciano, Berciano and Lafarga.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 April 2015
                : 18 June 2015
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 96, Pages: 17, Words: 12461
                Funding
                Funded by: “Dirección General de Investigación” of Spain
                Award ID: BFU2011-23983
                Funded by: Centro de Investigación en Red sobre Enfermedades Neurodegenerativas
                Award ID: CB06/05/0037
                Categories
                Neuroscience
                Original Research

                Neurosciences
                amyotrophic lateral sclerosis,bexarotene,g93asod1,mouse,proteostasis,retinoid-x receptor
                Neurosciences
                amyotrophic lateral sclerosis, bexarotene, g93asod1, mouse, proteostasis, retinoid-x receptor

                Comments

                Comment on this article