1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influenza A virus polymerase acidic protein E23G/K substitutions weaken key baloxavir drug-binding contacts with minimal impact on replication and transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC 50. EC 50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA–BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.

          Author summary

          Baloxavir is a new and potent anti-influenza drug targeting essential functions of viral replication. Currently, the I38T polymerase acidic protein (PA) substitution is the major marker of reduced susceptibility and potential resistance to baloxavir, but the full baloxavir resistance profile remains unclear. Here, we demonstrated that PA E23G/K substitutions alone weaken baloxavir efficacy, but they also synergize with I38T to impair drug activity further. E23G/K substitutions are located close to the binding site of baloxavir and indirectly weaken key drug-binding interactions. This effect has some negative consequences for virus replication, but E23G/K viruses possess the capacity for airborne spread between naïve ferrets, the gold-standard model of human influenza transmission. Therefore, E23G/K viruses have the potential for community spread, which would adversely affect baloxavir clinical implementation. Our study supports ongoing surveillance for circulating human E23G/K viruses, and it may inform design of enhanced baloxavir-like drugs less susceptible to emergence of viral resistance.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents

          Baloxavir marboxil is a selective inhibitor of influenza cap-dependent endonuclease. It has shown therapeutic activity in preclinical models of influenza A and B virus infections, including strains resistant to current antiviral agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eight-plasmid system for rapid generation of influenza virus vaccines.

            The antigenic variation of influenza A virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins requires frequent changes in vaccine formulation. The classical method of creating influenza virus seed strains for vaccine production is to generate 6 + 2 reassortants that contain six genes from a high-yield virus, such as A/PR/8/34 (H1N1) and the HA and NA genes of the circulating strains. The techniques currently used are time-consuming because of the selection process required to isolate the reassortant virus. We generated the high-yield virus A/PR/8/34 (H1N1) entirely from eight plasmids. Its growth phenotype in embryonated chicken eggs was equivalent to that of the wild-type virus. By using this DNA-based cotransfection technique, we generated 6 + 2 reassortants that had the antigenic determinants of the influenza virus strains A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), A/teal/HK/W312 (H6N1), and A/quail/HK/G1/97 (H9N2). Our findings demonstrate that the eight-plasmid system allows the rapid and reproducible generation of reassortant influenza A viruses for use in the manufacture of vaccines. Copyright 2002 Elsevier Science Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil

              Baloxavir acid (BXA), derived from the prodrug baloxavir marboxil (BXM), potently and selectively inhibits the cap-dependent endonuclease within the polymerase PA subunit of influenza A and B viruses. In clinical trials, single doses of BXM profoundly decrease viral titers as well as alleviating influenza symptoms. Here, we characterize the impact on BXA susceptibility and replicative capacity of variant viruses detected in the post-treatment monitoring of the clinical studies. We find that the PA I38T substitution is a major pathway for reduced susceptibility to BXA, with 30- to 50-fold and 7-fold EC50 changes in A and B viruses, respectively. The viruses harboring the I38T substitution show severely impaired replicative fitness in cells, and correspondingly reduced endonuclease activity in vitro. Co-crystal structures of wild-type and I38T influenza A and B endonucleases bound to BXA show that the mutation reduces van der Waals contacts with the inhibitor. A reduced affinity to the I38T mutant is supported by the lower stability of the BXA-bound endonuclease. These mechanistic insights provide markers for future surveillance of treated populations.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                13 July 2022
                July 2022
                : 18
                : 7
                : e1010698
                Affiliations
                [1 ] Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
                [2 ] Department of Chemistry, Lomonosov State University, Moscow, Russian Federation
                University of Maryland, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                [¤]

                Current address: Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America

                Author information
                https://orcid.org/0000-0002-9980-2112
                Article
                PPATHOGENS-D-22-00490
                10.1371/journal.ppat.1010698
                9312377
                35830486
                79d13707-7204-4c2e-ba2c-908b4b766315
                © 2022 Jones et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 March 2022
                : 23 June 2022
                Page count
                Figures: 8, Tables: 4, Pages: 25
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: 75N93021C00016
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: HHSN272201400006C
                Award Recipient :
                This project was funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contracts 75N93021C00016 (RJW) and HHSN272201400006C (RJW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Ferrets
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Mammals
                Ferrets
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Transmission and Infection
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Polymerases
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza Viruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Influenza Viruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Influenza Viruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Orthomyxoviruses
                Influenza Viruses
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Influenza
                Physical Sciences
                Chemistry
                Chemical Elements
                Oxygen
                Custom metadata
                vor-update-to-uncorrected-proof
                2022-07-25
                All relevant data are within the manuscript and its Supporting information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article